BCA101 - Digital Electronics

Multiple Choice Questions

- 1. i) The maximum positive number that can be represented in 1's complement representation is
 - a) $2^{n-1}-1$ b) $1-2^{n-1}$ c) $-(2^{n-1}-1)$ d) 2^{n-1}

ii) The value of F is

b)	MOS	d) TTL
viii) J-K flip – flop has		
a) b)	one stable state two stable state	c) no stable state d) none of these
ix) Master-slave configuration is used in flip-flops to		
a) b) c) d)	increase its clicking rate reduce power dissipation eliminate race around condition improve its reliability	
x) The equation $\sqrt{213}$ = 13 is valid for which one of the number systems with base?		
a)	Base 8	c) Base 6
b)	Base 6	d) Base 4
xi) Simplified form of Boolean expression		
F(A, B, C) = ABC + A'BC + AB'C + ABC' is		
a) b)	AB + BC + CA A + BC + CA	c) AB + B + CA d) ABC + A + B + C
xii) PROMs are used primarily for		
a) b)	data storage temporary program and data storage	

- c) they are inexpensive
- d) permanent program & data storage

Short Answer Type Questions

- 2. Implement a full adder circuit using decoder.
- 3. Design a combinational circuit using an 8 x 4 ROM that accepts a 3-bit number & generates an output binary number equal to the square of input no.
- 4. Simplify the following expression using K-map
 - $Y = \pi (0, 1, 4, 5, 6, 8, 9, 12, 13, 14)$
- 5. Check whether the Even parity Hamming code for 4-bit data, (1001011)₂ is correct or not. If not, correct the code.
- 6. Explain race around condition of J-K flip-flop. Show how this condition can be avoided.
- 7. Perform the arithmetic operation:

(-22)_{decimal} + (13)_{decimal} + (-15)_{decimal}

Using 2's complement binary form.

Long Answer Type Questions

 a) Design an asynchronous 4-bit up-down counter and it will count up when a signal line M = 0 and count down when a signal line M = 1.

b) Design a sequential circuit that implements the following state diagram. Use all D-type FF for the design.

9. a) Write down the excitation table of JK and D flip-flops. Derive the excitation equations for theses two flip-flops.

b) Design a clocked R-S flip-flop using NAND gates. Explain its principle of operation.

- 10. a) Simplify the following function using K-map.
 - i) $F = \pi m (0, 1, 3, 8, 10, 15) . \pi d (11, 13, 14)$
 - ii) $F = \Sigma m (0, 4, 7, 9, 13, 15) + \Sigma d (10, 14)$

b) What is ROM and RAM? What is the basic difference between EPROM and EEROM?

- 11. a) Draw a neat diagram for a R-2R ladder type DAC. What is linearity error and offset error in a DAC?
 - c) Find the conversion time of a successive approximation A/D converter which uses a 2 MHz clock and a 5-bit binary ladder containing 8V reference. What is the conversion rate?

- 12. Write short notes on any three of the following:
 - a) CMOS Logic
 - b) Tri-state gates in TTL family
 - c) A/D convertor
 - d) Data lock-out in a counter
 - e) EPROM