

Chapter 9. Variable Scope and Functions

So far, we have been using only global variables. In this chapter, we will learn about

other kinds of variables and how to use them. This chapter also tells you how to

divide your code into functions.

9.1 Scope and Class

All variables have two attributes: scope and class. The scope of a variable is the area

of the program in which the variable is valid. A global variable is valid everywhere

(hence the name global), so its scope is the whole program. A local variable has a

scope that is limited to the block in which it is declared and cannot be accessed

outside that block. A block is a section of code enclosed in curly braces ({}). Figure

9-1 shows the difference between local and global variables.

Figure 9-1. Local and global variables

You can declare a local variable with the same name as a global variable. Normally,

the scope of the variable count (first declaration) would be the whole program. The

declaration of a second local count takes precedence over the global declaration

inside the small block in which the local count is declared. In this block, the global

count is hidden . You can also nest local declarations and hide local variables. Figure

9-2 illustrates a hidden variable.

mywbut.com

Figure 9-2. Hidden variables

The variable count is declared as both a local variable and a global variable.

Normally, the scope of count (global) is the entire program; however, when a

variable is declared inside a block, that instance of the variable becomes the active

one for the length of the block. The global count has been hidden by the local count

for the scope of this block. The shaded block in the figure shows where the scope of
count (global) is hidden.

A problem exists in that when you have the statement:

count = 1;

you cannot tell easily to which count you are referring. Is it the global count, the one

declared at the top of main, or the one in the middle of the while loop? You should
give these variables different names, like total_count , current_count , and

item_count.

The class of a variable may be either permanent or temporary. Global variables are

always permanent. They are created and initialized before the program starts and

rema in until it terminates. Temporary variables are allocated from a section of

memory called the stack at the beginning of the block. If you try to allocate too

many temporary variables, you will get a "Stack overflow" error. The space used by

the temporary variables is returned to the stack at the end of the block. Each time

the block is entered, the temporary variables are initialized.

mywbut.com

The size of the stack depends on the system and compiler you are using. On many

UNIX systems, the program is automatically allocated the largest possible stack. On

other systems, a default stack size is allocated that can be changed by a compiler

switch. On MS-DOS/Windows systems, the stack space must be less than 65,536

bytes. This may seem like a lot of space; however, several large arrays can eat it up

quickly. You should consider making all large arrays permanent.

Local variables are temporary unless they are declared static.

static has an entirely different meaning when used
with global variables. It indicates that a variable is
local to the current file. See Chapter 18.

Example 9 -1 illustrates the difference between permanent and temporary variables.

We have chosen obvious names: temporary is a temporary variable, while
permanent is permanent. The variable temporary is initialized each time it is

created (at the beginning of the for statement block). The variable permanent is

initialized only once, at startup time.

In the loop, both variables are incremented. However, at the top of the loop,

temporary is initialized to one, as shown in Example 9-1.

Example 9-1. vars/vars.c

#include <stdio.h>

int main() {

 int counter; /* loop counter */
 for (counter = 0; counter < 3; ++counter) {

 int temporary = 1; /* A temporary variable */
 static int permanent = 1; /* A permanent variable */

 printf("Temporary %d Permanent %d\n",

 temporary, permanent);
 ++temporary;

 ++permanent;

 }
 return (0);

}

The output of this program is:

mywbut.com

Temporary 1 Permanent 1
Temporary 1 Permanent 2

Temporary 1 Permanent 3

Temporary variables are sometimes referred to as
automatic variables because the space for them is
allocated automatically. The qualifier auto can be
used to denote a temporary variable; however, in
practice it is almost never used.

Table 9 -1 describes the different ways in which a variable can be declared.

Table 9-1. Declaration Modifiers

Declared Scope Class Initialized

Outside all blocks Global Permanent Once

static outside all blocks Global[1] Permanent Once

Inside a block Local Temporary Each time block is entered

static inside a block Local Permanent Once

[1] A static declaration made outside blocks indicates the variable is local to the file in which it is declared. (See

Chapter 18 for more information on programming with multiple files.)

9.2 Functions

Functions allow us to group commonly used code into a compact unit that can be
used repeatedly. We have already encountered one function, main. It is a special

function called at the beginning of the program. All other functions are directly or

indirectly called from main.

Suppose we want to write a program to compute the area of three triangles. We

could write out the formula three times, or we could create a function to do the work.

Each function should begin with a comment block containing the following:

Name

Name of the function

Description

Description of what the function does

mywbut.com

Parameters

Description of each of the parameters to the function

Returns

Description of the return value of the function

Additional sections may be added such as file formats, references, or notes. Refer to

Chapter 3 , for other suggestions.

Our function to compute the area of a triangle begins with:

/***
 * triangle -- Computes area of a triangle. *

 * *

 * Parameters *
 * width -- Width of the triangle. *

 * height -- Height of the triangle. *
 * *
 * Returns *

 * area of the triangle. *

 ***/

The function proper begins with the line:

float triangle(float width, float height)

float is the function type. The two parameters are width and height. They are of

type float also.

C uses a form of parameter passing called "Call by value". When our procedure
triangle is called, with code such as:

triangle(1.3, 8.3);

C copies the value of the parameters (in this case 1.3 and 8.3) into the function's
parameters (width and height) and then starts executing the function's code. With

this form of parameter passing, a function cannot pass data back to the caller using

parameters.[2]

[2] This statement is not strictly true. We can trick C into passing information back through the use of pointers,

as we'll see in Chapter 13.

mywbut.com

The function type is not required by C. If no function
type is declared, the type defaults to int. However, if
no type is provided, the maintainer cannot determine
if you wanted to use the default (int) or if you simply
forgot to declare a type. To avoid this confusion,
always declare the function type and do not use the
default.

The function computes the area with the statement:

area = width * height / 2.0;

What's left is to give the result to the caller. This step is done with the return

statement:

return (area);

Example 9 -2 shows our full triangle function.

Example 9-2. tri-sub/tri-sub.c

#include <stdio.h>
/**

 * triangle -- Computes area of a triangle. *

 * *
 * Parameters *
 * width -- Width of the triangle. *

 * height -- Height of the triangle. *

 * *
 * Returns *
 * area of the triangle. *

 **/
float triangle(float width, float height)

{

 float area; /* Area of the triangle */

 area = width * height / 2.0;

 return (area);

}

The line:

size = triangle(1.3, 8.3);

mywbut.com

is a call to the function triangle. C assigns 1.3 to the parameter width and 8.3 to

height.

If functions are the rooms of our building, then parameters are the doors between

the rooms. In this case, the value 1.3 is going through the door marked width.

Parameters' doors are one way. Things can go in, but they can't go out. The return

statement is how we get data out of the function. In our triangle example, the

function assigns the local variable area the value 5.4, then executes the statement

return (area);.

The return value of this function is 5.4, so our statement:

size = triangle (1.3, 8.3)

assigns size the value 5.4.

Example 9 -3 computes the area of three triangles.

Example 9-3. tri-prog/tri-prog.c

[File: tri-sub/tri-prog.c]

#include <stdio.h>

/**

 * triangle -- Computes area of a triangle. *
 * *

 * Parameters *

 * width -- Width of the triangle. *
 * height -- Height of the triangle. *

 * *
 * Returns *

 * area of the triangle. *
 **/

float triangle(float width, float height)

{
 float area; /* Area of the triangle */

 area = width * height / 2.0;
 return (area);

}

int main()
{

mywbut.com

 printf("Triangle #1 %f\n", triangle(1.3, 8.3));
 printf("Triangle #2 %f\n", triangle(4.8, 9.8));

 printf("Triangle #3 %f\n", triangle(1.2, 2.0));
 return (0);
}

If we want to use a function before we define it, we must declare it just like a

variable to inform the compiler about the function. We use the declaration:

/* Compute a triangle */

float triangle (float width, float height);

for the triangle function. This declaration is called the function prototype.

The variable names are not required when declaring a function prototype. Our

prototype could have just as easily been written as:

float triangle(float, float);

However, we use the longer version because it gives the programmer additional
information, and it's easy to create prototypes using the editor's cut and paste

functions.

Strictly speaking, the prototypes are optional for some functions. If no prototype is

specifie d, the C compiler assumes the function returns an int and takes any number

of parameters. Omitting a prototype robs the C compiler of valuable information

that it can use to check function calls. Most compilers have a compile -time switch

that warns the programmer about function calls without prototypes.

9.3 Functions with No Parameters

A function can have any number of parameters, including none. But even when

using a function with no parameters, you still need the parentheses:

value = next_index();

Declaring a prototype for a function without parameters is a little tricky. You can't

use the statement:

int next_index();

because the C compiler will see the empty parentheses and assume that this is a

K&R-style function declaration. See Chapter 19, for details on this older style. The

keyword void is used to indicate an empty parameter list. So the prototype for our

next_index function is:

mywbut.com

int next_index(void);

void is also used to indicate that a function does not return a value. (Void is similar

to the FORTRAN subroutine or PASCAL procedure.) For example, this function just

prints a result; it does not return a value:

void print_answer(int answer)
{
 if (answer < 0) {

 printf("Answer corrupt\n");

 return;

 }
 printf("The answer is %d\n", answer);

}

Question 9-1: Example 9 -4 should compute the length of a string.[3] Instead, it

insists that all strings are of length 0. Why? (Click here for the answer Section 9.6)

[3] This function performs the same function as the library function strlen .

Example 9-4. len/len.c

/**

 * Question: *

 * Why does this program always report the length *

 * of any string as 0? *
 * *

 * A sample "main" has been provided. It will ask *

 * for a string and then print the length. *
 **/

#include <stdio.h>

/**

 * length -- Computes the length of a string. *

 * *

 * Parameters *
 * string -- The string whose length we want. *

 * *

 * Returns *
 * the length of the string. *

 **/
int length(char string[])
{

 int index; /* index into the string */

mywbut.com

 /*

 * Loop until we reach the end of string character
 */
 for (index = 0; string[index] != '\0'; ++index)

 /* do nothing */

 return (index);
}

int main()

{
 char line[100]; /* Input line from user */

 while (1) {
 printf("Enter line:");

 fgets(line, sizeof(line), stdin);

 printf("Length (including newline) is: %d\n", length(line));
 }

}

9.4 Structured Programming

Computer scientists spend a great deal of time and effort studying how to program.
The result is that they come up with absolutely, positively, the best programming

methodology—a new one each month. Some of these systems include flow charts,

top-down programming, bottom-up programming, structured programming, and

object-oriented design (OOD).

Now that we have learned about functions, we can talk about using structured

programming techniques to design programs. These techniques are ways of

dividing up or structuring a program into small, well -defined functions. They make

the program easy to write and easy to understand. I don't claim that this method is

the absolute best way to program. It happens to be the method that works best for

me. If another system works better for you, use it.

The first step in programming is to decide what you are going to do. This has already

been described in Chapter 7 . Next, decide how you are going to structure your data.

Finally, the coding phase begins. When writing a paper, you start with an outline of

each section in the paper described by a single s entence. The details will be filled in

later. Writing a program is a similar process. You start with an outline, and this
becomes your main function. The details can be hidden within other functions. For

example, Example 9-5 solves all the world's problems.

mywbut.com

Example 9-5. Solve the World's Problems

int main()
{

 init();
 solve_problems();

 finish_up();
 return (0);

}

Of course, some of the details will have to be filled in later.

Start by writing the main function. It should be less than three pages long. If it

grows longer, consider splitting it up into two smaller, simpler functions. After the

main function is complete, you can start on the others.

This type of structured programming is called top-down programming. You start at

the top (main) and work your way down.

Another type of coding is called bottom -up programming. This method involves

writing the lowest-level function first, testing it, and then building on that working

set. I tend to use some bottom-up techniques when I'm working with a new
standard function that I haven't used before. I write a small function to make sure

that I really know how the function works, and then continue from there. This

approach is used in Chapter 7 to construct the calculator program.

So, in actual practice, both techniques are useful. A mostly top-down, partially

bottom-up technique results. Computer scientists have a term for this methodology:

chaos. The one rule you should follow in programming is "Use what works best."

9.5 Recursion

Recursion occurs when a function calls itself directly or indirectly. Some

programming functions, such as the factorial, lend themselves naturally to recursive

algorithms.

A recursive function must follow two basic rules:

• It must have an ending point.

• It must make the problem simpler.

A definition of factorial is:

fact(0) = 1

mywbut.com

fact(n) = n * fact(n-1)

In C, this definition is:

int fact(int number)

{
 if (number == 0)
 return (1);

 /* else */

 return (number * fact(number-1));

}

This definition satisfies our two rules. First, it has a definite ending point (when

number == 0). Second, it simplifies the problem because the calculation of

fact(number-1) is simpler than fact(number).

Factorial is legal only for number >= 0. But what happens if we try to compute

fact(-3)? The program will abort with a stack overflow or similar message.

fact(-3) calls fact(-4), which calls fact(-5), etc. No ending point exists. This

error is referred to as an infinite recursion error.

Many things that we do iteratively can be done recursively—for example, summing

up the elements of an array. We define a function to add eleme nts m-n of an array

as follows:

• If we have only one element, then the sum is simple.

• Otherwise, we use the sum of the first element and the sum of the rest.

In C, this function is:

int sum(int first, int last, int array[])

{
 if (first == last)
 return (array[first]);

 /* else */

 return (array[first] + sum(first+1, last, array));

}

For example:

Sum(1 8 3 2) =
 1 + Sum(8 3 2) =

 8 + Sum(3 2) =

 3 + Sum (2) =

mywbut.com

 2
 3 + 2 = 5

 8 + 5 = 13
 1 + 13 = 14
Answer = 14

9.6 Answers

Answer 9 -1: The programmer went to a lot of trouble to explain that the for loop
did nothing (except increment the index). However, there is no semicolon (;) at the

end of the for. C keeps on reading until it sees a statement (in this case
return(index)), and then puts that statement in the for loop. Properly done, this

program should look like Example 9-6.

Example 9-6. len2/len2.c

#include <stdio.h>

int length(char string[])

{
 int index; /* index into the string */

 /*

 * Loop until we reach the end-of-string character
 */
 for (index = 0; string[index] != '\0'; ++index)

 continue; /* do nothing */
 return (index);

}

int main()
{

 char line[100]; /* Input line from user */

 while (1) {
 printf("Enter line:");

 fgets(line, sizeof(line), stdin);

 printf("Length (including newline) is: %d\n", length(line));

 }
}

mywbut.com

9.7 Programming Exercises

Exercise 9-1: Write a procedure that counts the number of words in a string. (Your
documentation should describe exactly how you define a word.) Write a program to

test your new procedure.

Exercise 9-2: Write a function begins(string1,string2) that returns true if

string1 begins string2. Write a program to test the function.

Exercise 9-3: Write a function count(number, array, length) that counts the

number of times number appears in array. The array has length e lements. The

function should be recursive. Write a test program to go with the function.

Exercise 9 -4: Write a function that takes a character array and returns a primitive

hash code by adding up the value of each character in the array.

Exercise 9-5: Write a function that returns the maximum value of an array of

numbers.

Exercise 9 -6: Write a function that scans a character array for the character - and

replaces it with _.

mywbut.com

