
  

Chapter 8. More Control Statements  

 

 

8.1 for Statement  

The for statement allows the programmer to execute a block of code for a specified 

number of times. The general form of the for statement is: 

for (initial-statement; condition; iteration-statement)     

    body-statement; 

This statement is equivalent to: 

initial-statement;  

while (condition) {      

    body-statement;     
    iteration-statement;  

} 

For example, Example 8 -1 uses a while loop to add five numbers.  

Example 8-1. total5w/totalw.c  

#include <stdio.h> 
 

int total;      /* total of all the numbers */ 
int current;    /* current value from the user */ 

int counter;    /* while loop counter */ 

 
char line[80];  /* Line from keyboard */ 

 

int main() { 
    total = 0; 

 
    counter = 0; 

    while (counter < 5) { 
        printf("Number? "); 

 

        fgets(line, sizeof(line), stdin); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

        sscanf(line, "%d", &current); 
        total += current; 

 
        ++counter; 
    } 

    printf("The grand total is %d\n", total); 

    return (0); 
} 

The same program can be rewritten using a for statement as shown in Example 8 -2.  

Example 8-2. total5f/total5f.c  

#include <stdio.h> 
 

int total;      /* total of all the numbers */ 

int current;    /* current value from the user */ 

int counter;    /* for loop counter */ 
 

char line[80];  /* Input from keyboard */ 

 
int main() { 

    total = 0; 
    for (counter = 0; counter < 5; ++counter) { 
        printf("Number? "); 

 

        fgets(line, sizeof(line), stdin); 

        sscanf(line, "%d", &current); 
        total += current; 

    } 

    printf("The grand total is %d\n", total); 
    return (0); 

} 

Note that counter goes from to 4. Ordinarily, you count five items as 1, 2, 3, 4, 5; 

but you will perform much better in C if you change your thinking to zero-based 

counting and then count five items as 0, 1, 2, 3, 4. (One-based counting is one of 

the main causes of array overflow errors. See Chapter 5.) 

Careful examination of the two flavors of our program reveals the similarities 

between the two versions as seen in Figure 8-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

Figure 8-1. Similarities between "while" and "for" 

 

Many other programming languages do not allow you to change the control variable 
(in this case, counter) inside the loop. C is not so picky. You can change the control 

variable at any time —you can jump into and out of the loop and generally do things 

that would make a PASCAL or FORTRAN programmer cringe. (Although C gives you 

the freedom to do such insane things, that doesn't mean you should do them.) 

Question 8-1: When Example 8 -3 runs, it prints: 

Celsius:101 Fahrenheit:213 

and nothing more. Why?  (Click here for the answer Section 8.4) 

Example 8-3. cent/cent.c  

#include <stdio.h> 
/* 

 * This program produces a Celsius to Fahrenheit conversion 
 *    chart for the numbers 0 to 100. 

 */ 

 
/* The current Celsius temperature we are working with */ 

int celsius; 

int main() { 

    for (celsius = 0; celsius <= 100; ++celsius); 
        printf("Celsius:%d Fahrenheit:%d\n", 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
mywbut.com



  

            celsius, (celsius * 9) / 5 + 32); 
    return (0); 

} 

Question 8-2: Example 8 -4 reads a list of five numbers and counts the number of 

3s and 7s in the data. Why does it give us the wron g answers? (Click here for the 

answer Section 8.4) 

Example 8-4. seven/seven.c  

#include <stdio.h> 
char line[100];     /* line of input */ 

int seven_count;    /* number of 7s in the data */ 
int data[5];        /* the data to count 3 and 7 in */ 
int three_count;    /* the number of 3s in the data */ 

int index;          /* index into the data */ 

 

int main() { 
 

    seven_count = 0; 

    three_count = 0; 
    printf("Enter 5 numbers\n"); 

    fgets(line, sizeof(line), stdin); 
    sscanf(line, "%d %d %d %d %d",  
        &data[1], &data[2], &data[3], 

        &data[4], &data[5]); 

 

    for (index = 1; index <= 5; ++index) { 
 

        if (data[index] == 3) 

            ++three_count; 
 

        if (data[index] == 7) 
            ++seven_count; 
    } 

    printf("Threes %d Sevens %d\n",  

            three_count, seven_count); 

    return (0); 
} 

When we run this program with the data 3 7 3 0 2, the results are: 

Threes 4 Sevens 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

(Your results may vary.) 

8.2 switch Statement  

The switch statement is similar to a chain of if/else statements. The general form 

of a switch statement is: 

switch  ( expression  ) {  
    case  constant1 :  

        statement   
        . . . .  
        break ;  

 

    case  constant2 :  
        statement   
        . . . .  

        /* Fall through */ 

 
    default:   

        statement   
        . . . .  
        break ;  

 

    case  constant3 :  
        statement   
        . . . .  

        break ;  

} 

The switch statement evaluates the value of an expression and branches to one of 

the case labels. Duplicate labels are not allowed, so only one case will be selected. 

The expression must evaluate an integer, character, or enumeration.  

The case labels can be in any order and must be constants. Th e default label can 

be put anywhere in the switch. No two case labels can have the same value. 

When C sees a switch statement, it evaluates the expression and then looks for a 

matching case  label. If none is found, the default label is used. If no default is 

found, the statement does nothing.  

 

The switch statement is very similar to the PASCAL 
case statement. The main difference is that while 
PASCAL allows only one statement after the label, C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
mywbut.com



  

allows many. C will keep executing until it hits a 
break statement. In PASCAL, you can't fall through 
from one case to another, but in C you can. 

Another difference between the C Switch and PASCAL 
case statements is that PASCAL requires that the 
default statement (otherwise statement) appear at 
the end. C allows the default statement to appear 
anywhere.  

 

Example 8 -5 contains a series of if and else statements: 

Example 8-5. Syntax for if and else  

if (operator == '+') {  

    result += value;  

} else if (operator == '-') {  
    result -= value;  
} else if (operator == '*') {  

    result *= value;  

} else if (operator == '/') {  
    if (value == 0) {  
        printf("Error:Divide by zero\n");  

        printf("   operation ignored\n");  
    } else  

        result /= value;  

    } else {  
        printf("Unknown operator %c\n", operator);  
    } 

This section of code can easily be rewritten as a switch statement. In this switch , 
we use a different case for each operation. The default clause takes care of all the 

illegal operators. 

Rewriting our program using a switch statement makes it not only simpler, but 
easier to read. Our revised calc program is shown as Example 8 -6.  

Example 8-6. calc3/calc3.c  

#include <stdio.h> 

char  line[100];   /* line of text from input */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

 
int   result;      /* the result of the calculations */ 

char  operator;    /* operator the user specified */ 
int   value;       /* value specified after the operator */ 
int main() 

{ 

    result = 0;    /* initialize the result */ 
 
    /* loop forever (or until break reached) */ 

    while (1) { 

        printf("Result: %d\n", result); 
        printf("Enter operator and number: "); 

 
        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%c %d", &operator, &value); 

 

        if ((operator == 'q') || (operator == 'Q')) 
            break; 
        switch (operator) { 

        case '+': 

            result += value; 
            break; 

        case '-': 
            result -= value; 
            break; 

        case '*': 

            result *= value; 
            break; 
        case '/': 

            if (value == 0) { 

                printf("Error:Divide by zero\n"); 
                printf("   operation ignored\n"); 

            } else 
                result /= value; 
            break; 

        default: 

            printf("Unknown operator %c\n", operator); 
            break; 
        } 

    } 

    return (0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
mywbut.com



  

A break statement inside a switch tells the computer to continue execution after 

the switch. If a break  statement is not there, execution will continue with the next 

statement. 

For example: 

control = 0;  
/* a not so good example of programming */  
switch (control) {  

        case 0:  

                printf("Reset\n");  

        case 1:  
                printf("Initializing\n");  

                break;  

        case 2:  
                printf("Working\n");  

} 

In this case, when control == 0, the program will print: 

Reset  

Initializing 

case 0  does not end with a break statement. After printing Reset, the program falls 

through to the next statement (case 1 ) and prints Initializing. 

A problem exists with this syntax. You cannot determine if the program is supposed 
to fall through from case 0  to case 1, or if the programmer forgot to put in a break 

statement. In order to clear up this confusion, a case section should always end 
with a break statement or the comment /* Fall through */, as shown in the 

following example: 

/* a better example of programming */  
switch (control) {  
        case 0:  

                printf("Reset\n");  

                /* Fall through */  
        case 1:  
                printf("Initializing\n");  

                break;  

        case 2:  
                printf("Working\n");  

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

Because case 2  is last, it doesn't need a break statement. A break would cause the 

program to skip to the end of the switch, and we're already there. 

Suppose we modify the program slightly and add another case  to the switch: 

/* We have a little problem */  

switch (control) {  
        case 0:  
                printf("Reset\n");  

                /* Fall through */  

        case 1:  

                printf("Initializing\n");  
                break;  

        case 2:  

                printf("Working\n");  
        case 3:  

                printf("Closing down\n");  
} 

Now when control == 2, the program prints: 

Working  

Closing down 

This result is an unpleasant surprise. The problem is caused by the fact that case 2  

is no longer the last case. We fall through. (Unintentionally—otherwise, we would 
have included a /* Fall through */  comment.) A break is now necessary. If we 

always put in a break  statement, we don't have to worry about whether or not it is 

really needed. 

/* Almost there */  

switch (control) {  

        case 0:  
                printf("Reset\n");  
                /* Fall through */  

        case 1:  

                printf("Initializing\n");  
                break;  

        case 2:  
                printf("Working\n");  
                break;  

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

Finally, we ask the question: what happens when control == 5? In this case, 

because no matching case  or default clause exists, the entire switch statement is 

skipped. 

In this example, the programmer did not include a default statement because 

control will never be anything but 0, 1, or 2. However, variables can get assigned 

strange values, so we need a little more defensive programming, as shown in the 

following example: 

/* The final version */  

switch (control) {  

    case 0:  
        printf("Reset\n");  

        /* Fall through */  

    case 1:  
        printf("Initializing\n");  

        break;  
    case 2:  
        printf("Working\n");  

        break;  

    default:  

        printf(  
            "Internal error, control value (%d) impossible\n",  

                control);  

        break;  
} 

Although a default is not required, it should be put in every switch. Even though 

the default may be: 

default:  

        /* Do nothing */  

        break; 

it should be included. This method indicates, at the very least, that you want to 

ignore out-o f-range data. 

8.3 switch, break, and continue  

The break  statement has two uses. Used inside a switch , break causes the 

program to go to the end of the switch. Inside a for or while  loop, break  causes 

a loop exit. The continue statement is valid only inside a loop. Continue  will cause 

the program to go to the top of the loop. Figure 8-2 illu strates both continue and 

break inside a switch statement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

The program in Figure 8 -2 is designed to convert an integer with a number of 

different formats into different bases. If you want to know the value of an octal 

number, you would enter o ( for octal) and the number. The command q is used to 

quit the program. For example: 

Enter conversion and number: o 55  

Result is 45  
Enter conversion and number: q 

The help command is special because we don't want to print a number after the 

command. After all, the result of help is a few lines of text, not a number. So a 

continue is used inside the switch to start the loop at the beginning. Inside the 

switch, the continue  statement works on the loop, while the break statement 

works on the switch. 

There is one break outside the switch  that isdesigned to let the user exit the 

program. The control flow for this program can be seen in Figure 8 -2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

Figure 8-2. switch/continue  

 

8.4 Answers  

Answer 8 -1: The problem lies with the semicolon (; ) at the end of the for 

statement. The body of the for statement is between the closing parentheses and 
the semicolon. In this case, the body does not exist. Even though the printf 

statement is indented, it is not part of the for statement. The indentation is 

misleading. The C compiler does not look at indentation. The program does nothing 

until the expression: 

celsius <= 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
mywbut.com



  

becomes false (celsius == 101). Then the printf is executed. 

Answer 8 -2: The problem is that we read the number into data[1] through 

data[5]. In C, the range o f legal array indices is to array-size-1, or in this case, to 

4. data[5] is illegal. When we use it, strange things happen; in this case, the 

variable three_count is changed. The solution is to only use data[0] to data[4]. 

So, we need to change the sscanf line to read: 

sscanf(line, "%d %d %d %d %d", 

    &data[0], &data[1], &data[2], &data[3], &data[4]); 

Also, the for loop must be changed from: 

for (index = 1; index <= 5; ++index) 

to: 

for (index = 0; index < 5; ++index) 

 

Experienced C programmers could look at our broken 
for loop and immediately sense that something was 
wrong. Two clues that something strange is going on 
are 1) the for loop starts at 1, and 2) there is a <= 
operator in the loop. Most C for loops start at and use 
< for termination.  

8.5 Programming Exercises  

Exercise 8-1: Print a checker board (8-by-8 grid). Each square should be 5 -by-3 

characters wide. A 2-b y-2 example follows: 

+-----+-----+  
|     |     |  

|     |     |  
|     |     |  
+-----+-----+  

|     |     |  

|     |     |  
|     |     |  
+-----+-----+ 

Exercise 8-2: The total resistance of n resistors in parallel is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
               

mywbut.com



  

 

Suppose we have a network of two resistors with the values 400  and 200 . 

Then our equation would be: 

 

Substituting in the value of the resistors we get: 

 

So the total resistance of our two-resistor network is 133.3 . 

Write a program to compute the total resistance for any number of parallel resistors. 

Exercise 8-3: Write a program to average n numbers. 

Exercise 8-4: Write a program to print out the multiplication table. 

Exercise 8-5: Write a program that reads a character and prints out whether or not 

it is a vowel or a consonant. 

Exercise 8-6: Write a program that converts numbers to words. For example, 895 

results in "eight nine five."  

Exercise 8-7: The number 85 is pronounced "eighty-five," not "eight five." Modify 

the previous program to handle the numbers through 100 so  that all numbers come 

out as we really say them. For example, 13 would be "thirteen" and 100 would be 

"one hundred." 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
mywbut.com




