

Chapter 7. Programming Process

Programming is more than just writing code. Software has a life cycle. It is born,

grows up, becomes mature, and finally dies, only to be replaced by a newer,

younger product. Figure 7-1 illustrates the life cycle of a program. Understanding

this cycle is important because, as a programmer, you will spend only a small

amount of time writing new code. Most programming time is spent modifying and

debugging existing code. Software does not exist in a vacuum; it must be

docume nted, maintained, enhanced, and sold. In this chapter, we will take a look at

a small programming project using one programmer. Larger projects that involve

many people will be discussed in Chapter 18. Although our final code is less than

100 lines, the principles used in its construction can be applied to programs with

thousands of lines of code.

mywbut.com

Figure 7-1. Software life cycle

The major steps in making a program are:

• Requirements. Programs start when someone gets an idea and starts to

implement it. The requirement document describes, in very general terms,

what is wanted.

• Program specification. The specification is a description of what the

program does. In the beginning, a preliminary specification is used to

describe what the program is going to do. Later, as the program becomes

more refined, so does the specification. Finally, when the program is finished,

the specification serves as a complete description of what the program does.

• Code design. The programmer does an overall design of the program. The

design should include major algorithms, module definitions, file formats, and

data structures.

mywbut.com

• Coding. The next step is writing the program. This step involves first writing

a prototype and then filling it in to create the full program.

• Testing. The programmer should design a test plan and then use it to test

his program. When possible, the programmer should have someone else test

the program.

• Debugging. Unfortunately, very few programs work the first time. They

must be corrected and tested again.

• Release. The program is packaged, documented, and sent out into the

world to be used.

• Maintenance. Programs are never perfect. Bugs will be found and will need

correction. This step is the maintenance phase of programming.

• Revision and updating. After a program has been working for a while, the

users will want changes, such as more features or more intelligent

algorithms. At this point, a new specification is created and the process

starts again.

7.1 Setting Up

The operating system allows you to group files in directories. Just as file folders

serve as a way of keeping papers together in a filing cabinet, directories serve as a

way of keeping files together. (Windows 95 goes so far as to call its directories

"folders.") In this chapter, we create a simple calculator program. All the files for

this program are stored in a directory named calc. In UNIX, we create a new

directory under our home directory and then move to it, as shown in the following

example:

% cd ~

% mkdir calc
% cd ~/calc

On MS-DOS type:

C:\> cd \

C:\> mkdir calc
C:\> cd \calc
C:\CALC>

This directory setup is extremely s imple. As you generate more and more programs,

you will probably want a more elaborate directory structure. More information on

how to organize directories or folders can be found in your operating system

manual.

mywbut.com

7.2 Specification

For this chapter, we assume that we have the requirement to "write a program that
acts like a four-function calculator." Typically, the requirements that you are given

is vague and incomplete. The programmer refines it into something that exactly

defines the program that he is going to produce. So the first step is to write a

preliminary users' specification document that describes what your program is

going to do and how to use it. The document does not describe the internal structure

of the program or the algorithm you plan on u sing. A sample specification for our

four-function calculator appears below in Calc: A Four-Function Calculator.

The preliminary specification serves two purposes. First, you should give it to your

boss (or customer) to make sure that you agree on what each of you said. Second,

you can circulate it among your colleagues and see if they have any suggestions or

corrections.

This preliminary specification was circulated and received the comments:

• How are you going to get out of the program?

• What happens when you try to divide by 0?

Calc: A Four-Function Calculator

Preliminary Specification

Dec. 10, 1989

Steve Oualline

Warning: This document is a preliminary specification. Any
resemblance to any software living or dead is purely
coincidental.

Calc is a program that allows the user to turn a $2,000
computer into a $1.98 four-function calculator. The program
will add, subtract, multiply, and divide simple integers.

When the program is run, it will zero the result register and
display the register's contents. The user can then type in an
operator and number. The result will be updated and
displayed. The following operators are valid:

Operator Meaning

mywbut.com

+ Addition

- Subtraction

* Multiplication

/ Division

For example (user input is in boldface):

calc
Result: 0
Enter operator and number: + 123
Result: 123
Enter operator and number: - 23
Result: 100
Enter operator and number: / 25
Result: 4
Enter operator and number: * 4
Result: 16
0

So, we add a new operator, q for quit, and we add the statement:

"Dividing by 0 results in an error message and the result register is left

unchanged."

IV + IX = XIII?

A college instructor once gave his students an assignment to
"write a four-function calculator." One of his students noticed
that this assignment was a very loose specification and decided
to have a little fun. The professor didn't say what sort of
numbers had to be used, so the student created a program
that worked only with Roman numerals (V+ III = VIII). The
program came with a complete user manual—written in Latin.

7.3 Code Design

After the preliminary specification has been approved, we can start designing code.
In the code design phase, the programmer plans his work. In large programming

projects involving many people, the code would be broken up into modules, to be

assigned to the programmers. At this stage, file formats are planned, data

structures are designed, and major algorithms are decided upon.

mywbut.com

Our simple calculator uses no files and requires no fancy data structures. What's left

for this phase is to design the major algorithm. Outlined in pseudo code, a

shorthand halfway between English and real code, the major algorithm is:

Loop
 Read an operator and number

 Do the calculation
 Display the result
End-Loop

7.4 Prototype

After the code design is completed, we can begin writing the program. But rather

than try to write the entire program at once and then debug it, we will use a method

called fast prototyping. We implement the smallest portion of the specification that

will still do something. In our case, we will cut our four functions down to a

one-function calculator. After we get this small part working, we can build the rest

of the functions onto this stable foundation. Also, the prototype gives the boss
something to look at and play with, giving him a good idea of the project's direction.

Good communication is the key to good programming, and the more you can show

someone the better. The code for th e first version of our four-function calculator is

found in Example 7 -1.

Example 7-1. calc1/calc1.c

#include <stdio.h>

char line[100];/* line of data from the input */

int result; /* the result of the calculations */
char operator; /* operator the user specified */
int value; /* value specified after the operator */

int main()

{

 result = 0; /* initialize the result */

 /* Loop forever (or till we hit the break statement) */

 while (1) {

 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

mywbut.com

 if (operator = '+') {
 result += value;

 } else {
 printf("Unknown operator %c\n", operator);
 }

 }

}

The program begins by initializing the variable result to 0. The main body of the

program is a loop starting with:

while (1) {

This loop will repeat until a break statement is reached. The code:

printf("Enter operator and number: ");
 fgets(line, sizeof(line), stdin);

 sscanf(line,"%c %d", &operator, &value);

asks the user for an operator and number. These are scanned and stored in the
variables operator and value. Next, we start checking the operators. If the

operator is a plus sign (+), we perform an addition using the line:

if (operator = '+') {
 result += value;

So far, we only recognize the plus (+) operator. As soon as this operator works

correctly, we will add more operators by adding more if statements.

Finally, if an illegal operator is entered, the line:

} else {
 printf("Unknown operator %c\n", operator);

}

writes an error message telling the user that he made a mistake.

7.5 Makefile

After the source has been entered, it needs to be compiled and linked. Up until now

we have been running the compiler manually. This process is somewhat tedious and

prone to error. Also, larger programs consist of many modules and are extremely

difficult to compile by hand. Fortunately, both UNIX and MS-DOS/Windows have a

utility called make[1] that will handle the details of compilation. For now, use this

example as a template and substitute the name of your program in place of "calc."

mywbut.com

make will be discussed in detail in Chapter 18. The program looks at the file called

Makefile for a description of how to compile your program and runs the compiler for

you.

[1] Microsoft's Visual C++ calls this utility nmake.

Because the Makefile contains the rules for compilation, it is customized for the

compiler. The following is a set of Makefiles for all of the compilers described in this

book.

7.5.1 Generic UNIX

File: calc1/makefile.unx
#---#

Makefile for Unix systems #
using a GNU C compiler #

#---#

CC=gcc
CFLAGS=-g

Compiler flags:
-g -- Enable debugging

calc1: calc1.c

 $(CC) $(CFLAGS) -o calc1 calc1.c

clean:

 rm -f calc1

The make utility is responsible for one of the nastiest
surprises for unsuspecting users. The line:

$(CC) $(CFLAGS) -o calc1 calc1.c

must begin with a tab. Eight spaces won't work. A
space and a tab won't work. The line must start with
a tab. Check your editor and make sure that you can
tell the difference between a tab and bunch of
spaces.

mywbut.com

7.5.2 UNIX with the Free Software Foundation's gcc

Compiler

File: calc1/makefile.gcc
#---#

Makefile for UNIX systems #
using a GNU C compiler #

#---#

CC=gcc
CFLAGS=-g -D__USE_FIXED_PROTOTYPES__ -ansi

Compiler flags:
-g -- Enable debugging

-Wall -- Turn on all warnings (not used since it gives away
the bug in this program)

-D__USE_FIXED_PROTOTYPES__
-- Force the compiler to use the correct headers

-ansi -- Don't use GNU extensions. Stick to ANSI C.

calc1: calc1.c

 $(CC) $(CFLAGS) -o calc1 calc1.c

clean:

 rm -f calc1

7.5.3 Borland C++

[File: calc1/makefile.bcc]

Makefile for Borland's Borland-C++ compiler

CC=bcc

Flags

-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings

-ml -- Large model

CFLAGS=-N -v -w -ml

calc1.exe: calc1.c

mywbut.com

 $(CC) $(CFLAGS) -ecalc1 calc1.c

clean:
 erase calc1.exe

7.5.4 Turbo C++

File: calc1/makefile.tcc

#---#
Makefile for DOS systems #

using a Turbo C compiler. #
#---#

CC=tcc

CFLAGS=-v -w -ml

calc1.exe: calc1.c

 $(CC) $(CFLAGS) -ecalc1.exe calc1.c

clean:
 del calc1.exe

7.5.5 Visual C++

[File: calc1/makefile.msc]
#---#
Makefile for DOS systems #

using a Microsoft Visual C++ compiler. #
#---#

CC=cl

Flags

AL -- Compile for large model

Zi -- Enable debugging

W1 -- Turn on warnings

CFLAGS=/AL /Zi /W1

calc1.exe: calc1.c

 $(CC) $(CFLAGS) calc1.c

clean:

 erase calc1.exe

mywbut.com

To compile the program, just execute the make command. make will determine which

compilation commands are needed and then execute them.

make uses the modification dates of the files to determine whether or not a compile

is necessary. Compilation creates an object file. The modification date of the object

file is later than the modification date of its source. If the source is edited, the

source's modification date is updated, and the object file is then out of date. make

checks these dates, and if the source was modified after the object, make recompiles

the object.

7.6 Testing

After the program is compiled without errors, we can move on to the testing phase.

Now is the time to start writing a test plan. This document is simply a list of the steps

we perform to make sure the program works. It is written for two reasons:

• If a bug is found, we want to be able to reproduce it.

• If we change the program, we will want to retest it to make sure new code

did not break any of the sections of the program that were previously

working.

Our test plan starts out as:

Try the following operations:

+ 123 Result should be 123

+ 52 Result should be 175
x 37 Error message should be output

After we run the program, we get:

Result: 0

Enter operator and number: + 123
Result: 123
Enter operator and number: + 52

Result: 175

Enter operator and number: x 37

Result: 212

Something is clearly wrong. The entry x 37 should have generated an error message,

but it didn't. A bug is in the progra m. So we begin the debugging phase. One of the

advantages of making a small working prototype is that we can isolate errors early.

mywbut.com

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small
program we can easily spot the mistake. However, let's assume that instead of a

21-line program, we have a much larger program containing 5,000 lines. Such a

program would make inspection more difficult, so we need to proceed to the next

step.

Most systems have C debugging programs; however, each system is different.

Some systems have no debugger. In such a case, we must resort to a diagnostic

print statement. The technique is simple: put a printf at the points at which you
know the data is good (just to make sure the data is really good). Then put a printf

at points at which the data is bad. Run the program and keep putting in printf

statements until you isolate the area in the program that contains the mistake. Our
program, with diagnostic printf statements added, looks like:

printf("Enter operator and number: ");

fgets(line, sizeof(line), stdin);
sscanf("%d %c", &value, &operator);

printf("## after scanf %c\n", operator);
if (operator = '+') {
 printf("## after if %c\n", operator);

 result += value;

The ## at the beginning of each printf is used to

indicate a temporary debugging printf. When the

debugging is complete, the ## makes the associated
statements easy to identify and remove.

Running our program again results in:

Result: 0
Enter operator and number: + 123

Result: 123
Enter operator and number: + 52

after scanf +

after if +
Result: 175

Enter operator and number: x 37

after scanf x
after if +

mywbut.com

Result: 212

From this example we see that something is going wrong with the if statement.

Somehow, the variable operator is an "x" going in and a "+" coming out. Closer

inspection reveals that we have made the old mistake of using = instead of ==.

After we fix this bug, the program runs correctly. Building on this working

foundation, we add code for the other operators: dash (-), asterisk (*), and slash

(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#include <stdio.h>

char line[100];/* line of text from input */

int result; /* the result of the calculations */

char operator; /* operator the user specified */

int value; /* value specified after the operator */

int main()

{

 result = 0; /* initialize the result */

 /* loop forever (or until break reached) */
 while (1) {
 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 if ((operator == 'q') || (operator == 'Q'))
 break;

 if (operator == '+') {
 result += value;

 } else if (operator == '-') {

 result -= value;

 } else if (operator == '*') {
 result *= value;

 } else if (operator == '/') {

 if (value == 0) {
 printf("Error:Divide by zero\n");

 printf(" operation ignored\n");
 } else

mywbut.com

 result /= value;
 } else {

 printf("Unknown operator %c\n", operator);
 }
 }

 return (0);

}

We expand our test plan to include the new operators and try it again:

+ 123 Result should be 123

+ 52 Result should be 175
x 37 Error message should be output

- 175 Result should be zero

+ 10 Result should be 10
/ 5 Result should be 2

/ 0 Divide by zero error
* 8 Result should be 16
q Program should exit

While testing the prog ram, we find that, much to our surprise, the program works.

The word "Preliminary" is removed from the specification, and the program, test

plan, and specification are released.

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small

program we can easily spot the mistake. However, let's assume that instead of a

21-line program, we have a much larger program containing 5,000 lines. Such a

program would make inspection more difficult, so we need to proceed to the next

step.

Most systems have C debugging programs; however, each system is different.

Some systems have no debugger. In such a case, we must resort to a diagnostic

print statement. The technique is simple: put a printf at the points at which you

know the data is good (just to make sure the data is really good). Then put a printf
at points at which the data is bad. Run the program and keep putting in printf

statements until you isolate the area in the program that contains the mistake. Our
program, with diagnostic printf statements added, looks like:

printf("Enter operator and number: ");

fgets(line, sizeof(line), stdin);
sscanf("%d %c", &value, &operator);
printf("## after scanf %c\n", operator);

mywbut.com

if (operator = '+') {
 printf("## after if %c\n", operator);

 result += value;

The ## at the beginning of each printf is used to

indicate a temporary debugging printf. When the

debugging is complete, the ## makes the associated
statements easy to identify and remove.

Running our program again results in:

Result: 0

Enter operator and number: + 123
Result: 123

Enter operator and number: + 52
after scanf +

after if +
Result: 175

Enter operator and number: x 37

after scanf x
after if +

Result: 212

From this example we see that something is going wrong with the if statement.
Somehow, the variable operator is an "x" going in and a "+" coming out. Closer

inspection reveals that we have made the old mistake of using = instead of ==.

After we fix this bug, the program runs correctly. Building on this working
foundation, we add code for the other operators: dash (-), asterisk (*), and slash

(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#include <stdio.h>

char line[100];/* line of text from input */

int result; /* the result of the calculations */

char operator; /* operator the user specified */
int value; /* value specified after the operator */

int main()
{

mywbut.com

 result = 0; /* initialize the result */

 /* loop forever (or until break reached) */
 while (1) {
 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 if ((operator == 'q') || (operator == 'Q'))
 break;

 if (operator == '+') {
 result += value;

 } else if (operator == '-') {

 result -= value;
 } else if (operator == '*') {
 result *= value;

 } else if (operator == '/') {

 if (value == 0) {
 printf("Error:Divide by zero\n");

 printf(" operation ignored\n");
 } else
 result /= value;

 } else {

 printf("Unknown operator %c\n", operator);
 }
 }

 return (0);

}

We expand our test plan to include the new operators and try it again:

+ 123 Result should be 123
+ 52 Result should be 175

x 37 Error message should be output
- 175 Result should be zero
+ 10 Result should be 10

/ 5 Result should be 2

/ 0 Divide by zero error

* 8 Result should be 16
q Program should exit

mywbut.com

While testing the program, we find that, much to our surprise, the program works.

The word "Preliminary" is removed from the specification, and the program, test

plan, and specification are released.

7.8 Maintenance

Good programme rs put each program through a long and rigorous testing process
before releasing it to the outside world. Then the first user tries the program and

almost immediately finds a bug. This step is the maintenance phase. Bugs are fixed,

the program is tested (t o make sure that the fixes didn't break anything), and the

program is released again.

7.9 Revisions

Although the program is officially finished, we are not done with it. After the

program is in use for a few months, someone will come to us and ask, "Can you add

a modulus operator?" So we revise the specifications, add the change to the

program, update the test plan, test the program, and then release the program

again.

As time passes, more people will come to us with additional requests for changes.

Soon o ur program has trig functions, linear regressions, statistics, binary arithmetic,

and financial calculations. Our design is based on the concept of one-character

operators. Soon we find ourselves running out of characters to use. At this point, our

program is doing work far in excess of what it was initially designed to do. Sooner or

later we reach the point where the program needs to be scrapped and a new one

written from scratch. At that point, we write a preliminary specification and start the

process again.

7.10 Electronic Archaeology

Electronic archeology is the art of digging through old code to discover amazing

things (like how and why the code works).

Unfortunately, most programmers don't start a project at the design step. Instead,

they are immedia tely thrust into the maintenance or revision stage and must face

the worst possible job: understanding and modifying someone else's code.

Your computer can aid greatly in your search to discover the true meaning of

someone else's code. Many tools are available for examining and formatting code.

Some of these tools include:

mywbut.com

• Cross references. These programs have names like xref, cxref, and

cross. System V Unix has the utility cscope. A cross reference prints out a

list of variables and indicates where each variable is used.
• Program indenters. Programs like cb and indent will take a program and

indent it correctly (correct indentation is something defined by the tool

maker).

• Pretty printers. A pretty printer such as vgrind or cprint will take the

source and typeset it for printing on a laser printer.
• Call graphs. On System V Unix the program cflow can be used to analyze

the program. On other systems there is a public-domain utility, calls, which

produces call graphs. The call graphs show who calls whom and who is called

by whom.

Which tools should you use? Whichever work for you. Different programmers work

in different ways. Some of the techniques for examining code are listed in the

sections below. Choose the ones that work for you and use them.

7.11 Marking Up the Program

Take a printout of the program and make notes all over it. Use red or blue ink so that

you can tell the difference between the printout and the notes. Use a highlighter to

emphasize important sections. These notes are useful; put them in the program as

comments, then make a new printout and start the process again.

7.12 Using the Debugger

The debugger is a great tool for understanding how something works. Most

debuggers allow the user to step through the program one line at a time, examining

variables and discovering how things really work. After you find out what the code

does, make notes and put them in the program as comments.

7.13 Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor.
Suppose you want to find out what the variable sc is used for. Use the search

command to find the first place sc is used. Search again and find the second time it

is used. Continue searching until you know what the variable does.

Suppose you find out that sc is used as a sequence counter. Because you're already

in the editor, you can easily do a global search and replace to change sc to

sequence_counter. (Disaster warning: Before you make the change, make sure

that sequence_counter is not already defined as a variable. Also, watch out for

mywbut.com

unwanted replacements, such as changing the sc in "escape.") Comment the

declaration and you're on your way to creating an understandable program.

7.14 Add Comments

Don't be afraid of putting any information you have, no matter how little, into the

comments. Some of the comments I've used include:

int state; /* Controls some sort of state machine */

int rmxy; /* Something to do with color correction ? */

Finally, there is a catch-all comment:

int idn; /* ??? */

which means "I have no idea what this variable does." Even though the variable's

purpose is unknown, it is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the

structure will become clearer to you. By inserting notes (comments), you make the

code better and easier to understand for future programmers.

For example, suppose we are confronted with the following program written by

someone from "The-Terser-the-Better" school of programming. Our assignment is

to figure out what this code does. First, we pencil in some comments, as shown in

Figure 7 -2.

mywbut.com

Figure 7-2. A terse program

Our mystery program requires some work. After going through it and applying the

principles described in this section, we get a well-commented, easy-to-understand
program, such as Example 7-3.

Example 7-3. good/good.c

/***

 * guess -- A simple guessing game. *
 * *

 * Usage: *

 * guess *

 * *
 * A random number is chosen between 1 and 100. *
 * The player is given a set of bounds and *

 * must choose a number between them. *
 * If the player chooses the correct number, he wins. *

 * Otherwise, the bounds are adjusted to reflect *

 * the player's guess and the game continues. *
 * *

 * *

 * Restrictions: *

mywbut.com

 * The random number is generated by the statement *
 * rand() % 100. Because rand() returns a number *

 * 0 <= rand() <= maxint this slightly favors *
 * the lower numbers. *
 ***/

#include <stdio.h>

#include <stdlib.h>
int number_to_guess; /* random number to be guessed */
int low_limit; /* current lower limit of player's range */

int high_limit; /* current upper limit of player's range */

int guess_count; /* number of times player guessed */
int player_number; /* number gotten from the player */

char line[80]; /* input buffer for a single line */
int main()
{

 while (1) {

 /*
 * Not a pure random number, see restrictions
 */

 number_to_guess = rand() % 100 + 1;

 /* Initialize variables for loop */

 low_limit = 0;
 high_limit = 100;
 guess_count = 0;

 while (1) {
 /* tell user what the bounds are and get his guess */
 printf("Bounds %d - %d\n", low_limit, high_limit);

 printf("Value[%d]? ", guess_count);

 ++guess_count;

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &player_number);

 /* did he guess right? */
 if (player_number == number_to_guess)
 break;

 /* adjust bounds for next guess */
 if (player_number < number_to_guess)

 low_limit = player_number;
 else

mywbut.com

 high_limit = player_number;

 }
 printf("Bingo\n");
 }

}

7.15 Programming Exercises

For each of these assignments, follow the software life cycle from specification

through release.

Exercise 7-1: Write a program to convert English units to metric (i.e., miles to

kilometers, gallons to liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic such as how many days

there are between 6/6/90 and 4/3/92. Include a specification and a code design.

Exercise 7-3: A serial transmission line can transmit 960 characters each second.

Write a program that will calculate the time required to send a file, given the file's

size. Try the prog ram on a 400MB (419,430,400 -byte) file. Use appropriate units.

(A 400MB file takes days.)

Exercise 7-4: Write a program to add an 8% sales tax to a given amount and round

the result to the nearest penny.

Exercise 7-5: Write a program to tell if a number is prime.

Exercise 7-6: Write a program that takes a series of numbers and counts the

number of positive and negative values.

mywbut.com

