

Chapter 6. Decision and Control

Statements

Once a decision was made, I did not worry about it afterward.

—Harry Truman

Calculations and expressions are only a small part of computer programming.

Decision and control statements are needed. They specify the order in which

statements are to be executed.

So far, we have constructed linear programs, that is, programs that execute in a

straight line, one statement after another. In this chapter, we will see how to

change the control flow of a program with branching statements and looping

statements. Branching statements cause one section of code to be executed or not

executed, depending on a conditional clause. Looping statements are used to repeat

a section of code a number of times or until some condition occurs.

6.1 if Statement

The if statement allows us to put some decision-making into our programs. The

general form of the if statement is:

if (condition)
 statement;

If the condition is true (nonzero), the statement will be executed. If the condition is

false (0), the statement will not be executed. For example, suppose we are writing

a billing program. At the end, if the customer owes us nothing or has a credit (owes

us a negative amount), we want to print a message. In C, this program is written:

if (total_owed <= 0)
 printf("You owe nothing.\n");

The operator <= is a relational operator that represents less than or equal to. This

statement reads "if the total_owed is less than or equal to zero, print the

message." The complete list of relational operators is found in Table 6 -1.

mywbut.com

Table 6-1. Relational Operators

Operator Meaning

<= Less than or equal to

< Less than

> Greater than

>= Greater than or equal to

== Equal[1]

!= Not equal

[1] The equal test (==) is different from the assignment operator (=). One of the most common problems the C

programmer faces is mixing them up.

Multiple statements may be grouped by putting them inside curly braces ({}). For

example:

if (total_owed <= 0) {

 ++zero_count;
 printf("You owe nothing.\n");

}

For readability, the statements enclosed in {} are usually indented. This allows the

programmer to quickly tell which statements are to be conditionally executed. As we

will see later, mistakes in indentation can result in programs that are misleading and

hard to read.

6.2 else Statement

An alternate form of the if statement is:

if (condition)

 statement;
else

 statement;

If the condition is true (nonzero), the first statement is executed. If it is false (0),

the second statement is executed. In our accounting example, we wrote out a

message only if nothing was owed. In real life, we probably would want to tell the

customer how much is owed if there is a balance due:

if (total_owed <= 0)

mywbut.com

 printf("You owe nothing.\n");
else

 printf("You owe %d dollars\n", total_owed);

Now, consider this program fragment (with incorrect indentation):

if (count < 10) /* if #1 */
 if ((count % 4) == 2) /* if #2 */
 printf("Condition:White\n");

 else

 printf("Condition:Tan\n");

Note to PASCAL programmers: unlike PASCAL, C
requires you to put a semicolon at the end of the
statement preceding else.

There are two if statements and one else. Which if does the else belong to?

1. It belongs to if #1.

2. It belongs to if #2.

3. If you never write code like this, don't worry about this situation.

The correct answer is "c." According to the C syntax rules, the else goes with the

nearest if, so "b" is syntactically correct. But writing code like this violates the KISS

principle (Keep It Simple, Stupid). We should write code as clearly and simply as

possible. This code fragment should be written as:

if (count < 10) { /* if #1 */

 if ((count % 4) == 2) /* if #2 */
 printf("Condition:White\n");

 else
 printf("Condition:Tan\n");

}

In our original example, we could not clearly determine which if statement had the

else clause; however, by adding an extra set of braces, we improve readability,

understanding, and clarity.

6.3 How Not to Use strcmp

The function strcmp compares two strings, and then returns zero if they are equal

or nonzero if they are different. To check if two strings are equal, we use the code:

/* Check to see if string1 == string2 */

mywbut.com

if (strcmp(string1, string2) == 0)
 printf("Strings equal\n");

else
 printf("Strings not equal\n");

Some programmers omit the comment and the == 0 clause. These omissions lead to

the following confusing code:

if (strcmp(string1, string2))

 printf("......");

At first glance, this program obviously compares two strings and executes the
printf statement if they are equal. Unfortunately, the obvious is wrong. If the

strings are equal, strcmp returns 0, and the printf is not executed. Because of this

backward behavior of strcmp , you should be very careful in your use of strcmp and

always comment its use. (It also helps to put in a comment explaining what you're

doing.)

6.4 Looping Statements

Looping statements allow the program to repeat a section of code any number of

times or until some condition occurs. For example, loops are used to count the

number of words in a document or to count the number of accounts that have

past-due balances.

6.5 while Statement

The while statement is used when the program needs to perform repetitive tasks.
The general form of a while statement is:

while (condition)
 statement;

The program will repeatedly execute the statement inside the while until the

condition becomes false (0). (If the condition is initially false, the statement will not

be executed.)

For example, Example 6 -1 later in this chapter will compute all the Fibonacci

numbers that are less than 100. The Fibonacci sequence is:

1 1 2 3 5 8

The terms are computed from the equations:

mywbut.com

1
1

2 = 1 + 1
3 = 1 + 2
5 = 2 + 3

etc.

In general terms this is:

f n = fn-1 + fn-2

This is a mathematical equation using mathematical variable names (fn).

Mathematicians use this very terse style of naming variables. In programming,

terse is dangerous, so we translate these names into something verbose for C. Table

6-2 shows this translation.

Table 6-2. Math to C Name Translation

Math-style name C-style name

fn next_number

fn-1 current_number

fn-2 old_number

In C code, the equation is expressed as:

next_number = current_number + old_number;

We want to loop until our current term is 100 or larger. The while loop:

while (current_number < 100)

will repeat our computation and printing until we reach this limit.

Figure 6 -1 shows what happens to the variable during the execution of the program.

At the beginning, current_number and old_number are 1. We print the value of the

current term. Then the variable next_number is computed (value 2). Next we

advance one term by putting next_number into current_number and

current_number into old_number . This process is repeated until we compute the

last term and the while loop exits.

mywbut.com

Figure 6-1. Fibonacci execution

This completes the body of the loop. The first two terms of the Fibonacci sequence

are 1 and 1. We initialize our first two terms to these values. Putting it all together,

we get the code in Example 6 -1 .

Example 6-1. fib/fib.c

#include <stdio.h>
int old_number; /* previous Fibonacci number */
int current_number; /* current Fibonacci number */

int next_number; /* next number in the series */

int main()

{
 /* start things out */

 old_number = 1;

 current_number = 1;

 printf("1\n"); /* Print first number */

 while (current_number < 100) {

 printf("%d\n", current_number);

 next_number = current_number + old_number;

 old_number = current_number;

 current_number = next_number;

mywbut.com

 }
 return (0);

}

6.6 break Statement

We have used a while statement to compute the Fibonacci numbers less than 100.
The loop exits when the condition after the while becomes false (0). Loops can be

exited at any point through the use of a break statement.

Suppose we want to add a series of numbers, but we don't know how many numbers

are to be added together. We need some way of letting the program know that we

have reached the end of our list. In Example 6-2 , we use the number zero (0) to

signal the end-of-list.

Note that the while statement begins with:

while (1) {

Left to its own devices, the program will loop forever because the while will exit

only when the expression 1 is 0. The only way to exit this loop is through a break

statement.

When we see the end of the list indicator (0), we use the statement:

if (item == 0)

 break;

to exit the loop.

Example 6-2. total/total.c

#include <stdio.h>

char line[100];/* line of data for input */
int total; /* Running total of all numbers so far */
int item; /* next item to add to the list */

int main()

{

 total = 0;
 while (1) {
 printf("Enter # to add \n");

 printf(" or 0 to stop:");

mywbut.com

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &item);

 if (item == 0)
 break;

 total += item;
 printf("Total: %d\n", total);
 }

 printf("Final total %d\n", total);

 return (0);
}

6.7 continue Statement

The continue statement is very similar to the break statement, except that instead

of terminating the loop, continue starts reexecuting the body of the loop from the

top. For example, if we want to modify the previous program to total only numbers

larger than 0, we could write a program such as Example 6-3.

Example 6-3. totalb/totalb.c

[File: totalb/totalb.c]

#include <stdio.h>
char line[100]; /* line from input */
int total; /* Running total of all numbers so far */

int item; /* next item to add to the list */
int minus_items; /* number of negative items */

int main()
{
 total = 0;

 minus_items = 0;

 while (1) {
 printf("Enter # to add\n");

 printf(" or 0 to stop:");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", &item);

 if (item == 0)

 break;

mywbut.com

 if (item < 0) {

 ++minus_items;
 continue;
 }

 total += item;

 printf("Total: %d\n", total);
 }

 printf("Final total %d\n", total);

 printf("with %d negative items omitted\n",
 minus_items);

 return (0);
}

6.8 Assignment Anywhere Side Effect

C allows the use of assignment statements almost anywhere. For example, you can

put assignment statements inside assignment statements:

/* don't program like this */
average = total_value / (number_of_entries = last - first);

This is the equivalent of saying:

/* program like this */
number_of_entries = last - first;
average = total_value / number_of_entries;

The first version buries the assignment of number_of_entries inside the expression.

Programs should be clear and simple and should not hide anything. The most

important rule of programming is keep it simple.

C also allows the programmer to put assignment statements in the while

conditional. For example:

/* do not program like this */
while ((current_number = last_number + old_number) < 100)

 printf("Term %d\n", current_number);

Avoid this type of programming. Notice how much clearer the logic is in the version

below:

/* program like this */

mywbut.com

while (1) {
 current_number = last_number + old_number;

 if (current_number >= 100)
 break;
 printf("Term %d\n", current_number);

}

Question 6 -1: For some strange reason, Example 6 -4 thinks that everyone owes a
balance of dollars. Why? (Click here for the answer Section 6.9)

Example 6-4. owe0/owe0.c

#include <stdio.h>
char line[80]; /* input line */
int balance_owed; /* amount owed */

int main()

{
 printf("Enter number of dollars owed:");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", &balance_owed);

 if (balance_owed = 0)
 printf("You owe nothing.\n");
 else

 printf("You owe %d dollars.\n", balance_owed);

 return (0);
}

Sample output:

Enter number of dollars owed: 12

You owe 0 dollars.

6.9 Answer

Answer 6 -1 : This program illustrates one of the most common and frustrating of C

errors. The problem is that C allows assignment statements inside if conditionals.

The statement:

if (balance_owed = 0)

mywbut.com

uses a single equal sign (=) instead of the double equal sign (==). C will assign
balance_owed the value and test the result (which is 0). If the result was nonzero

(true), the if clause would be executed. Because the result is (false), the else clause

is executed and the program prints the wrong answer.

The statement:

if (balance_owed = 0)

is equivalent to:

balance_owed = 0;

if (balanced_owed != 0)

The statement should be written:

if (balance_owed == 0)

This e rror is the most common error that beginning C programmers make.

6.10 Programming Exercises

Exercise 6-1: Write a program to find the square of the distance between two

points. (For a more advanced problem, find the actual distance. This problem
involves u sing the standard function sqrt. Use your help system to find out more

about how to use this function.)

Exercise 6-2: A professor generates letter grades using Table 6 -3.

Table 6-3. Grade Values

% Right Grade

0-60 F

61-70 D

71-80 C

81-90 B

91-100 A

Given a numeric grade, print the letter.

mywbut.com

Programmers frequently have to modify code that
someone else wrote. A good exercise is to take
someone else's code, such as the program that
someone wrote for Chapter 6, and then modify it.

Exercise 6-3: Modify the pre vious program to print a + or - after the letter grade,

based on the last digit of the score. The modifiers are listed in Table 6-4.

Table 6-4. Grade Modification Values

Last digit Modifier

1-3 -

4-7 <blank>

8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An F is only an F. There is no F+ or
F-.

Exercise 6-4: Given an amount of money (less than $1.00), compute the number

of quarters, dimes, nickels, and pennies needed.

Exercise 6-5: A leap year is any year divisible by 4, unless the year is divisible by

100, but not 400. Write a program to tell if a year is a leap year.

Exercise 6-6: Write a program that, given the number of hours an employee

worked and the hourly wage, computes the employee's weekly pay. Count any

hours over 40 as overtime at time and a half.

mywbut.com

