

Chapter 5. Arrays, Qualifiers, and

Reading Numbers

5.1 Arrays

In constructing our building, we have identified each brick (variable) by name. That

process is fine for a small number of bricks, but what happens when we want to

construct something larger? We would like to point to a stack of bricks and say,

"That's for the left wall. That's brick 1, brick 2, brick 3..."

Arrays allow us to do something similar with variables. An array is a set of

consecutive memory locations used to store data. Each item in the array is called an

element. The number of elements in an array is called the dimension of the array. A

typical array declaration is:

/* List of data to be sorted and averaged */
int data_list[3];

The above example declares data_list to be an array of three elements.

data_list[0], data_list[1], and data_list[2] are separate variables. To

reference an element of an array, you use a number called the index—the number

inside the square brackets ([]). C is a funny language that likes to start counting at

0. So, our three elements are numbered to 2.

Common sense tells you that when you declare

data_list to be three elements long, data_list[3]

would be valid. Common sense is wrong and

data_list[3] is illegal.

Example 5 -1 computes the total and average of five numbers.

Example 5-1. array/array.c

[File: array/array.c]

mywbut.com

#include <stdio.h>

float data[5]; /* data to average and total */
float total; /* the total of the data items */
float average; /* average of the items */

int main()
{
 data[0] = 34.0;

 data[1] = 27.0;

 data[2] = 45.0;
 data[3] = 82.0;

 data[4] = 22.0;

 total = data[0] + data[1] + data[2] + data[3] + data[4];

 average = total / 5.0;

 printf("Total %f Average %f\n", total, average);
 return (0);
}

This program outputs:

Total 210.000000 Average 42.000000

5.2 Strings

Strings are sequences of characters. C does not have a built-in string type; instead,
strings are created out of character arrays. In fact, strings are just character arrays

with a few restrictions. One of these restrictions is that the special character '\0'

(NUL) is used to indicate the end of a string.

For example:

char name[4];

int main()

{

 name[0] = 'S';
 name[1] = 'a';

 name[2] = 'm';
 name[3] = '\0';

 return (0);
}

mywbut.com

This code creates a character array of four elements. Note that we had to allocate

one character for the end-of-string marker.

String constants consist of text enclosed in double quotes (""). You may have

noticed that the first parameter to printf is a string constant. C does not allow one

array to be assigned to another, so we can't write an assignment of the form:

name = "Sam"; /* Illegal */

Instead we must use the standard library function strcpy to copy the string

constant into the variable. (strcpy copies the whole string, including the

end-of-string character.) To initialize the variable name to Sam, we would write:

#include <string.h>

char name[4];
int main()
{

 strcpy(name, "Sam"); /* Legal */

 return (0);
}

C uses variable -length strings. For example, the declaration:

#include <string.h>
char string[50];

int main()

{
 strcpy(string,"Sam");

}

create s an array (string) that can contain up to 50 characters. The size of the array

is 50, but the length of the string is 3. Any string up to 49 characters long can be

stored in string. (One character is reserved for the NUL that indicates

end-of-string.)

String and character constants are very different.

Strings are surrounded by double quotes (") and

characters by single quotes ('). So "X" is a

one-character string, while 'Y' is just a single

character. (The string "X" takes up two bytes, one for

mywbut.com

the X and one for the end-of-string (\0). The

character 'Y' takes up one byte.)

There are several standard routines that work on string variables, as shown in Table

5-1.

Table 5-1. Partial List of String Functions

Function Description

strcpy(string1, string2) Copy string2 into string1

strcat(string1, string2) Concatenate string2 onto the end of string1

length = strlen(string) Get the length of a string

strcmp(string1, string2)
0if string1 equals string2,

otherwise nonzero

The printf function uses the conversion %s for printing string variables, as shown

in Example 5 -2 .

Example 5-2. str/str.c

#include <string.h>

#include <stdio.h>

char name[30]; /* First name of someone */
int main()
{

 strcpy(name, "Sam"); /* Initialize the name */

 printf("The name is %s\n", name);
 return (0);
}

Example 5 -3 takes a first name and a last name and combines the two strings.

The program works by initializing the variable first to the first name (Steve). The

last name (Oualline) is put in the variable last. To construct the full name, the first

name is copied into full_name. Then strcat is used to add a space. We call strcat

again to tack on the last name.

mywbut.com

The dimension of the string variable is 100 because we know that no one we are

going to encounter has a name more than 99 characters long. (If we get a name

more than 99 characters long, our program will mess up. What actually happens is

that you write into memory that you shouldn't access. This access can cause your

program to crash, run normally and give incorrect results, or behave in other

unexpected ways.)

Example 5-3. full/full.c

#include <string.h>

#include <stdio.h>

char first[100]; /* first name */

char last[100]; /* last name */
char full_name[200]; /* full version of first and last name */

int main()
{

 strcpy(first, "Steve"); /* Initialize first name */
 strcpy(last, "Oualline"); /* Initialize last name */

 strcpy(full_name, first); /* full = "Steve" */

 /* Note: strcat not strcpy */

 strcat(full_name, " "); /* full = "Steve " */
 strcat(full_name, last); /* full = "Steve Oualline" */

 printf("The full name is %s\n", full_name);
 return (0);

}

The output of this program is:

The full name is Steve Oualline

5.3 Reading Strings

The standard function fgets can be used to read a string from the keyboard. The

general form of an fgets call is:

fgets(name, sizeof(name), stdin);

mywbut.com

where name identifies a string variable. (fgets will be explained in detail in Chapter

14.)

The arguments are:

name

is the name of a character array. The line (including the end -of-line character)

is read into this array.

sizeof(name)

indicates the maximum number of characters to read (plus one for the
end-of-string character). The sizeof function provides a convenient way of

limiting the number of characters read to the maximum numbers that the

variable can hold. This function will be discussed in more detail in Chapter

14.

stdin

is the file to read. In this case, the file is the standard input or keyboard.

Other files are discussed in Chapter 14.

Example 5 -4 reads a line from the keyboard and reports its length.

Example 5-4. length/length.c

#include <string.h>

#include <stdio.h>

char line[100]; /* Line we are looking at */

int main()

{
 printf("Enter a line: ");

 fgets(line, sizeof(line), stdin);

 printf("The length of the line is: %d\n", strlen(line));

 return (0);
}

When we run this program, we get:

Enter a line: test

The length of the line is: 5

mywbut.com

But the string test is only four characters. Where's the extra character coming from?

fgets includes the end-of-line in the string. So the fifth character is newline (\n).

Suppose we wanted to change our name program to ask the user for his first and

last name. Example 5 -5 shows how we could write the program.

Example 5-5. full1/full1.c

#include <stdio.h>

#include <string.h>

char first[100]; /* First name of person we are working with */

char last[100]; /* His last name */

/* First and last name of the person (computed) */

char full[200];

int main() {
 printf("Enter first name: ");

 fgets(first, sizeof(first), stdin);

 printf("Enter last name: ");

 fgets(last, sizeof(last), stdin);

 strcpy(full, first);

 strcat(full, " ");

 strcat(full, last);

 printf("The name is %s\n", full);

 return (0);

}

However, when we run this program we get the results:

% name2
Enter first name: John

Enter last name: Doe
The name is John

 Doe
%

What we wanted was "John Doe" on the same line. What happened? The fgets

function gets the entire line, including the end-of-line. We must get rid of this

character before printing.

mywbut.com

For example, the name "John" would be stored as:

first[0] = 'J'

first[1] = 'o'

first[2] = 'h'
first[3] = 'n'

first[4] = '\n'
first[5] = '\0' /* end of string */

By setting first[4] to NUL ('\0'), we can shorten the string by one character and

get rid of the unwanted newline. This change can be done with the statement:

first[4] = '\0';

The problem is that this method will work only for four-character names. We need a

general algorit hm to solve this problem. The length of this string is the index of the

end-of-string null character. The character before it is the one we want to get rid of.

So, to trim the string, we use the statement:

first[strlen(first)-1] = '\0';

Our new program is shown in Example 5-6.

Example 5-6. full2/full2.c

#include <stdio.h>

#include <string.h>

char first[100]; /* First name of person we are working with */

char last[100]; /* His last name */

/* First and last name of the person (computed) */

char full[200];

int main() {
 printf("Enter first name: ");

 fgets(first, sizeof(first), stdin);
 /* trim off last character */

 first[strlen(first)-1] = '\0';

 printf("Enter last name: ");

 fgets(last, sizeof(last), stdin);

 /* trim off last character */
 last[strlen(last)-1] = '\0';

mywbut.com

 strcpy(full, first);

 strcat(full, " ");
 strcat(full, last);

 printf("The name is %s\n", full);

 return (0);
}

Running this program gives us the following results:

Enter first name: John
Enter last name: Smith

The name is John Smith

5.4 Multidimensional Arrays

Arrays can have more than one dimension. The declaration for a two-dimensiona l

array is:

type variable[size1][size2]; /* Comment */

For example:

int matrix[2][4]; /* a typical matrix */

Notice that C does not follow the notation used in other languages of

matrix[10,12].

To access an element of the matrix, we use the notation:

matrix[1][2] = 10;

C allows the programmer to use as many dimensions as needed (limited only by the
amount of memory available). Additional dimensions can be tacked on:

four_dimensions[10][12][9][5];

Question 5-1: Why does Example 5 -7 print the wrong answer? (Click here for the

answer Section 5.15)

mywbut.com

Example 5-7. p_array/p_array.c

#include <stdio.h>

int array[3][2]; /* Array of numbers */

int main()
{

 int x,y; /* Loop indicies */

 array[0][0] = 0 * 10 + 0;

 array[0][1] = 0 * 10 + 1;

 array[1][0] = 1 * 10 + 0;
 array[1][1] = 1 * 10 + 1;

 array[2][0] = 2 * 10 + 0;
 array[2][1] = 2 * 10 + 1;

 printf("array[%d] ", 0);

 printf("%d ", array[0,0]);

 printf("%d ", array[0,1]);
 printf("\n");

 printf("array[%d] ", 1);
 printf("%d ", array[1,0]);

 printf("%d ", array[1,1]);
 printf("\n");

 printf("array[%d] ", 2);

 printf("%d ", array[2,0]);

 printf("%d ", array[2,1]);
 printf("\n");

 return (0);
}

5.5 Reading Numbers

So far, we have only read simple strings, but we want more. We want to read
numbers as well. The function scanf works like printf, except that scanf reads

numbers instead of writing them. scanf provides a simple and easy way of reading

numbers that almost never works . The function scanf is notorious for its poor

end-of-line handling, which makes scanf useless for all but an expert.

mywbut.com

However, we've found a simple way to get around the deficiencies of scanf—we

don't use it. Instead, we use fgets to read a line of input and sscanf to convert the

text into numbers. (The name sscanf stands for "string scanf". sscanf is like

scanf, but works on strings instead of the standard input.)

Normally, we use the variable line for lines read from the keyboard:

char line[100]; /* Line of keyboard input */

When we want to process input, we use the statements:

fgets(line, sizeof(line), stdin);

sscanf(line, format, &variable1, &variable2 . . .;

Here fgets reads a line and sscanf processes it. format is a string similar to the

printf format string. Note the ampersand (&) in front of the variable names. This

symbol is used to indicate that sscanf will change the value of the associated

variables. (For information on why we need the ampersand, see Chapter 13.)

If you forget to put & in front of each variable for

sscanf, the result could be a "Segmentation violation

core dumped" or "Illegal memory access" error. In
some cases a random variable or instruction will be
changed. On UNIX, damage is limited to the current
program; however, on MS-DOS/Windows, with its
lack of memory protection, this error can easily cause

more damage. On MS-DOS/Windows, omitting & can

cause a program or system crash.

In Example 5-8 , we use sscanf to get and then double a number from the user.

Example 5-8. double/double.c

[File: double/double.c]

#include <stdio.h>
char line[100]; /* input line from console */

int value; /* a value to double */

int main()

{

mywbut.com

 printf("Enter a value: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &value);

 printf("Twice %d is %d\n", value, value * 2);

 return (0);
}

This program reads in a single number and then doubles it. Notice that there is no

\n at the end of Enter a value:. This omission is intentional because we do not

want the computer to print a newline after the prompt. For example, a sample run

of the program might look like:

Enter a value: 12
Twice 12 is 24

If we replaced Enter a value: with Enter a value:\n, the result would be:

Enter a value:
12

Twice 12 is 24

Question 5-2: Example 5 -9 computes the area of a triangle, given the triangle's

width and height. For some strange reason, the compiler refuses to believe that we
declared the variable width. The declaration is right there on line 2, just after the

definition of height. Why isn't the compiler seeing it? (Click here for the answer

Section 5.15)

Example 5-9. tri/tri.c

#include <stdio.h>

char line[100];/* line of input data */
int height; /* the height of the triangle

int width; /* the width of the triangle */

int area; /* area of the triangle (computed) */

int main()

{
 printf("Enter width height? ");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d %d", &width, &height);

mywbut.com

 area = (width * height) / 2;
 printf("The area is %d\n", area);

 return (0);
}

5.6 Initializing Variables

C allows variables to be initialized in the declaration statement. For example, the
following statement declares the integer counter and initializes it to 0 :

int counter = 0; /* number cases counted so far */

Arrays can also be initialized in this manner. The element list must be enclosed in

curly braces ({}). For example:

/* Product numbers for the parts we are making */
int product_codes[3] = {10, 972, 45};

The previous initialization is equivalent to:

product_codes[0] = 10;

product_codes[1] = 972;
product_codes[2] = 45;

The number of elements in {} does not have to match the array size. If too many

numbers are present, a warning will be issued. If an insufficient amount of n umbers

are present, C will initialize the extra elements to 0.

If no dimension is given, C will determine the dimension from the number of

elements in the initialization list. For example, we could have initialized our variable
product_codes with the state ment:

/* Product numbers for the parts we are making */
int product_codes[] = {10, 972, 45};

Initializing multidimensional arrays is similar to initializing single-dimension arrays.

A set of brackets ([]) encloses each dimension. The declaration:

int matrix[2][4]; /* a typical matrix */

can be thought of as a declaration of an array of dimension 2 with elements that are
arrays of dimension 4. This array is initialized as follows:

/* a typical matrix */

mywbut.com

int matrix[2][4] =
 {

 {1, 2, 3, 4},
 {10, 20, 30, 40}
 };

Strings can be initialized in a similar manner. For example, to initialize the variable
name to the string "Sam", we use the statement:

char name[] = {'S', 'a', 'm', '\0'};

C has a special shorthand for initializing strings: Surround the string with double
quotes ("") to simplify initialization. The previous example could have been written:

char name[] = "Sam";

The dimension of name is 4, because C allocates a place for the '\0' character that

ends the string.

The following declaration:

char string[50] = "Sam";

is equivalent to:

char string[50];

.

.

.

strcpy(string,"Sam");

An array of 50 characters is allocated but the length of the string is 3.

5.7 Types of Integers

C is considered a medium-level language because it allows you to get very close to

the actual hardware of the machine. Some languages, like BASIC [1] , go to great

lengths to completely isolate the user fro m the details of how the processor works.

This simplification comes at a great loss of efficiency. C lets you give detailed

information about how the hardware is to be used.

[1] Some more advanced versions of BASIC do have number types. However, for this example, we are talking

about basic BASIC.

mywbut.com

For example, most machines let you use different length numbers. BASIC provides

the programmer with only one numeric type. Though this restriction simplifies the

programming, BASIC programs are extremely inefficient. C allows the programmer

to specify many different flavors of integers, so that the programmer can make best

use of hardware.

The type specifier int tells C to use the most efficient size (for the machine you are

using) for the integer. This can be two to four bytes depending on the machine.

(Some less common machines use strange integer sizes such as 9 or 40 bits.)

Sometimes you need extra digits to store numbers larger than those allowed in a

normal int. The declaration:

long int answer; /* the result of our calculations */

is used to allocate a long integer. The long qualifier informs C that we wish to
allocate extra storage for the integer. If we are going to use small numbers and wish

to reduce storage, we use the qualifier short. For example:

short int year; /* Year including the 19xx part */

C guarantees that the size of storage for short <= int <= long. In actual practice,

short almost always allocates two bytes, long four bytes, and int two or four bytes.

(See Appendix B, for numeric ranges.)

The type short int usually uses 2 bytes, or 16 bits. 15 bits are used normally for the

number and 1 bit for the sign. This format gives the type a range of -32768 (-215) to

32767 (215 - 1). An unsigned short int uses all 16 bits for the number, giving it the

range of to 65535 (216). All int declarations default to signed, so that the

declaration:

signed long int answer; /* final result */

is the same as:

long int answer; /* final result */

Finally, we consider the very short integer of type char. Character variables use 1

byte. They can also be used for numbers in the range of -128 to 127 (signed char)

or to 255 (unsigned char). Unlike integers, they do not default to signed ; the

default is compiler dependent.[2] Very short integers may be printed using the
integer conversion (%d).

[2] Turbo C++ and GNU's gcc even have a command-line switch to make the default for type char either signed

or unsigned.

mywbut.com

You cannot read a very short integer directly. You must read the number into an

integer and then use an assignment statement. For example:

#include <stdio.h>

signed char ver_short; /* A very short integer */
char line[100]; /* Input buffer */

int temp; /* A temporary number */

int main()

{

 /* Read a very short integer */
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &temp);

 very_short = temp;

}

Table 5 -2 contains the printf and sscanf conversions for integers.

Table 5-2. Integer printf/sscanf Conversions

%Conversion Uses

%hd (signed) short int

%d (signed) int

%ld (signed) long int

%hu unsigned short int

%u unsigned int

%lu unsigned long int

The range of the various flavors of integers is listed in Appendix B.

long int declarations allow the program to explicitly specify extra precision where it

is needed (at the expense of memory). short int numbers save space but have a

more limited range. The most compact integers have type char. They also have the

most limited range.

unsigned numbers provide a way of doubling the positive range at the expense of

eliminating negative numbers. They are also useful for things that can never be

negative, like counters and indices.

The flavor of number you use will depend on your program and storage

requirements.

mywbut.com

5.8 Types of Floats

The float type also comes in various flavors. float denotes normal precision
(usually 4 bytes). double indicates double precision (usually 8 bytes).

Double-precision variables give the programmer many times the range and

precision of single-precision (float) variables.

The qualifier long double denotes extended precision. On some systems, this is the

same as double; on others, it offers additional precision. All types of floating-point

numbers are a lways signed.

Table 5 -3 contains the printf and sscanf conversions for floating-point numbers.

Table 5-3. Float printf/sscanf Conversions

% Conversion Uses Notes

%f float printf only.[3]

%lf double scanf only.

%Lf long double Not available on all compilers.

[3] The %f format works for printing double and float because of an automatic conversion built into C's parameter

passing.

On some machines, single-precision, floating-point instructions execute faster (but

less accurately) than double -precision instructions. Double-precision instructions

gain accuracy at the expense of time and storage. In most cases, float is adequate;

however, if accuracy is a problem, switch to double. (See Chapter 16.)

5.9 Constant Declarations

Sometimes you want to use a value that does not change, such as . The keyword

const indicates a variable that never changes. For example, to declare a value for
PI, we use the statement:

const float PI = 3.1415927; /* The classic circle constant */

By convention, variable names use only lowercase
and constant names use only uppercase. However,
the language does not require this case structure,

mywbut.com

and some exotic coding styles use a different
convention.

Constants must be initialized at declaration time and can never be changed. For
example, if we tried to reset the value of PI to 3.0, we would generate an error

message:

PI = 3.0; /* Illegal */

Integer constants can be used as a size parameter when declaring an array:

/* Max. number of elements in the total list.*/
const int TOTAL_MAX = 50;

float total_list[TOTAL_MAX]; /* Total values for each category */

This way of specifying the use of integer constants is
a relatively new innovation in the C language and is
not yet fully supported by all compilers.

5.10 Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, su ch as 1234, 88, -123, etc.
These strings are decimal (base 10) numbers: 174 or 17410. Computers deal with

binary (base 2) numbers: 10101110. The octal (base 8) system easily converts to

and from binary. Each group of three digits (23 = 8) can be transformed into a single

octal digit. Thus, 10101110 can be written as 10 101 110 and changed to the octal

256. Hexadecimal (base 16) numbers have a similar conversion; only 4 bits are

used at a time.

The C language has conventions for representing octal and hexade cimal values.

Leading zeros are used to signal an octal constant. For example, 0123 is 123 (octal)

or 83 (decimal). Starting a number with "0x" indicates a hexadecimal (base 16)

constant. So, 0x15 is 21 (decimal). Table 5 -4 shows several numbers in all three

bases.

Table 5-4. Integer Examples

Base 10 Base 8 Base 16

6 06 0x6

mywbut.com

9 011 0x9

15 017 0xF

5.11 Operators for Performing Shortcuts

C not only provides you with a rich set of declarations, but also gives you a large

number of special-purpose operators.

Frequently, the programmer wants to increment (increase by 1) a variable. Using a

normal assignment statement, this operation would look like:

total_entries = total_entries + 1;

C provides us with a shorthand for performing this common task. The ++ operator is

used for incrementing:

++total_entries;

A similar operator, --, can be used for decrementing (decreasing by 1) a variable:

--number_left;
/* is the same as */

number_left = number_left - 1;

But suppose that we want to add 2 instead of 1. Then we can use the following

notation:

total_entries += 2;

This notation is equivalent to:

total_entries = total_entries + 2;

Each of the simple operators, as shown in Table 5-5, can be used in this manner.

Table 5-5. Shorthand Operators

Operator Shorthand Equivalent Statement

+= x += 2; x = x + 2;

-= x -= 2; x = x - 2;

mywbut.com

*= x *= 2; x = x * 2;

/= x /= 2; x = x / 2;

%= x %= 2; x = x % 2;

5.12 Side Effects

Unfortunately, C allows the programmer to use side effects. A side effect is an

operation that is performed in addition to the main operation executed by the

statement. For example, the following is legal C code:

size = 5;
result = ++size;

The first statement assigns to size the value of 5. The second statement assigns to

result the value of size (main operation) and increments size (side effect).

But in what order are these processes performed? There are four possible answers.

1. result is assigned the value of size (5), and then size is incremented.

result is 5 and size is 6.

2. size is incremented, and then result is assigned the value of size (6).

result is 6 and size is 6.

3. The answer is compile r-dependent and varies from computer to computer.

4. If we don't write code like this, then we don't have to worry about such

questions.

The correct answer is number 2: the increment occurs before the assignment.

However, number 4 is a much better answer. Th e main effects of C are confusing

enough without having to worry about side effects.

Some programmers value compact code very highly.
This attitude is a holdover from the early days of
computing when storage cost a significant amount of
money. I believe that the art of programming has
evolved to the point where clarity is much more
valuable than compactness. (Great novels, which a
lot of people enjoy reading, are not written in
shorthand.)

C actually provides two flavors of the ++ operator. One is variable++ and the other is

++variable. The first:

mywbut.com

number = 5;
result = number++;

evaluates the expressions, and then increments the number; result is 5. The

second:

number = 5;
result = ++number;

increments the number first, and then evaluates the expression; result is 6.

However, using ++ or -- in this way can lead to some surprising code:

o = --o - o--;

The problem with this line is that it looks as if someone wrote Morse code. The
programmer doesn't read this statement, but rather decodes it. If we never use ++
or -- as part of any other statement, and instead always put them on lines by

themselves, the difference between the two flavors of these operators will not be

noticeable.

5.13 ++x or x++

The two forms of the increment operator are called the prefix form (++x) and the

postfix form (x++). Which form should you use? Actually in C your choice doesn't

matter. However, if you use C++ with its overloadable operators, the prefix version
(++x) is more efficient.[4] So, to develop good habits for learning C++, use the prefix

form.[5]

[4] For details, see the book Practical C++ Programming (O'Reilly & Associates).

[5] Consider the irony of a language with its name in postfix form (C++) working more efficiently with prefix

forms of the increment and decrement operators. Maybe the name should be ++C.

5.14 More Side-Effect Problems

More complex side effects can confuse even the C compiler. Consider the following

code fragment:

value = 1;
result = (value++ * 5) + (value++ * 3);

mywbut.com

This expression tells C to perform the following steps:

1. Multiply value by 5, and add 1 to value.

2. Multiply value by 3, and add 1 to value.

3. Add the results of the two multiplications together.

Steps 1 and 2 are of equal priority (unlike in the previous e xample) so the compiler

can choose the order of execution. Suppose the compiler executes step 1 first, as

shown in Figure 5 -1.

Figure 5-1. Expression evaluation method 1

Or suppose the compiler executes step 2 first, as shown in Figure 5 -2.

Figure 5-2. Expression evaluation method 2

mywbut.com

By using the first method, we get a result of 11. By using the second method, we get

a result of 13. The result of this expression is ambiguous. Depending on how the

compiler was implemented, the result may be 11 or 13. Even worse, some compilers

change the behavior if optimization is turned on. So what was "working" code may

break when optimized.

By using the operator ++ in the middle of a larger expression, we created a problem.

(This problem is not the only problem that ++ and - - can cause. We will get into

more trouble in Chapter 10.)

In order to avoid trouble and keep the program simple, always put ++ and -- on a

line by themselves.

5.15 Answers

Answer 5 -1: The problem is the use of the expression array[x,y] in the printf

statement:

printf("%d ", array[x,y]);

Each index to a multidimension array must be placed inside its own set of square

brackets ([]). The statement should read:

printf("%d ", array[x][y]);

For those of you who want to read ahead a little, the comma operator can be used

to string multiple expressions together. The value of this operator is the value of the
last expressions. As a result x,y is equivalent to y; and array[y] is actually a

pointer to row y of the array. Because pointers have strange values, the printf

outputs strange results. (See Chapter 17, and Chapter 21.)

Answer 5 -2: The programmer accidentally omitted the end comment (*/) after the

comment for height. The comment continues onto the next line and engulfs the

declaration, as shown in Example 5-10.

mywbut.com

Example 5-10. Comment Answer

Consider another minor problem with this program. If width and height are both

odd, we get an answer that's slightly wrong. (How would you correct this error?)

5.16 Programming Exercises

Exercise 5-1: Write a program that converts Centigrade to Fahrenheit.

Exercise 5-2: Write a program to calculate the volume of a sphere.

Exercise 5-3: Write a program that prints the perimeter of a rectangle given its

height and width. perimeter = 2 · (width + height)

Exercise 5-4: Write a program that converts kilometers per hour to miles per h our.

miles = (kilometer · 0.6213712

Exercise 5-5: Write a program that takes hours and minutes as input, and then
outputs the total number of minutes. (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes, and

outputs the total hours and minutes (90 minutes = 1 hour 30 minutes).

mywbut.com

