

Chapter 2. Basics of Program Writing

Programs start as a set of instructions written by a human being.
Before they can be used by the computer, they must undergo several
transformations. In this chapter, we'll learn how to enter a program,
transform it into something the machine can use, and run it. Detailed
steps are provided for the most popular UNIX and DOS/Windows
compilers.

2.1 Programs from Conception to Execution

C programs are written in a high-level language using letters,
numbers, and the other symbols you find on a computer keyboard.
Computers actually execute a very low-level language called machine
code (a series of numbers). So, before a program level can be used, it
must undergo several transformations.

Programs start out as an idea in a programmer's head. He uses a text
editor to write his thoughts into a file called a source file, containing
source code. This file is transformed by the compiler into an object file.
Next, a program called the linker takes the object file, combines it
with predefined routines from a standard library, and produces an
executable program (a set of machine-language instructions). In the
following sections, we'll see how these various forms of the program
work together to produce the final program.

Figure 2-1 shows the steps that must be taken to transform a
program written in a high-level language into a executable program.

mywbut.com

Figure 2-1. Transformation of a high-level language

into a program

2.1.1 Wrappers

Fortunately you don't have to run the compiler, assembler, and linker
individually. Most C compilers use "wrapper" programs that
determine which tools need to be run and then run them.

Some programming systems go even further and provide the
developer with an Integrated Development Environment (IDE). The
IDE contains an editor, compiler, linker, project manager, debugger,
and more in one convenient package. Both Borland and Microsoft
provide IDEs with their compilers.

2.2 Creating a Real Program

Before we can actually start creating our own programs, we need to
know how to use the basic programming tools. In this section, we will
take you step by step through the process of entering, compiling, and
running a simple program.

mywbut.com

We will describe how to use two different types of compilers. The first
type is the standalone or command-line compiler. This type of
compiler is operated in a batch mode from the command line. In other
words, you type in a command, and the compiler turns your source
code into an executable program.

The other type of compiler is contained in an IDE. The IDE contains an
editor, compiler, project manager, and debugger in one package.

Most UNIX systems use command-line compilers. There are a few IDE
compilers available for UNIX, but they are rare. On the other hand,
almost every compiler for MS-DOS/Windows contains an IDE. For the
command-line die-hards, these compilers do contain a command-line
compiler as well.

2.3 Creating a Program Using a Command-Line

Compiler

In this section, we'll go through the step-by-step process needed to create a

program using a command-line compiler. Instructions are provided for a generic

UNIX compiler (cc), the Free Software Foundation's gcc compiler, Turbo C++,

Borland C++, and Microsoft Visual C++.[1]

[1] Turbo C++, Borland C++, and Microsoft Visual C++ are all C++ compilers that can also compile C code.

However, if you are using a Borland or Microsoft compiler, you might want to skip

ahead to the section on using the IDE.

2.3.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each

program that you're working on. In this case, we'll create a directory called hello to

hold our hello program.

On UNIX type:

% mkdir hello
% cd hello

On MS-DOS type:

C:> MKDIR HELLO

C:> CD HELLO

mywbut.com

2.3.2 Step 2. Create the Program

A program starts out as a text file. Example 2 -1 shows our program in source form.

Example 2-1. hello/hello.c

[File: hello/hello.c]
#include <stdio.h>

int main()

{
 printf("Hello World\n");
 return (0);

}

Use your favorite text editor to enter the program. Your file should be named

hello.c.

MS-DOS/Windows users should not use a word
processor such as MS-Word or WordPerfect to write
their programs. Word processors add formatting
codes to files, which confuse the compiler. You must
use a text ed itor such as the MS-DOS "EDIT" program
that is capable of editing ASCII files.

2.3.3 Step 3. Run the Compiler

The compiler takes the source file you've just made and converts it into an

executable program. Each compiler has a different command line. The commands

for the most popular compilers are listed below.

2.3.3.1 UNIX cc compiler (generic UNIX)

Most UNIX -based compilers follow the same generic standard. The C compiler is

named cc, and to compile our hello program we need the following command:

% cc -g -ohello hello.c

The -g option enables debugging. (The compiler adds extra information to the

program to make the program easier to debug.) The switch -ohello tells the

compiler that the program is to be called hello, and the final hello.c is the name

of the source file. See your compiler manual for details on all the possible options.

mywbut.com

There are several different C compilers for UNIX, so your command line may be

slightly different.

2.3.3.2 Free Software Foundation's gcc compiler

The Free Software Foundation, the GNU people, publish a number of high-quality

programs. (See the Glossary entry for information on how to get their software.)
Among their offerings is a C compiler called gcc.

To compile a program using the gcc compiler use the following command line:

% gcc -g -Wall -ohello hello.c

The additional switch -Wall turns on the warnings.

The GNU compiler contains several extensions to the basic C language. If you want

to turn these features off, use the following command line:

% gcc -g -Wall -ansi -pedantic -ohello hello.c

The switch -ansi turns off features of GNU C that are incompatible with ANSI C. The

-pedantic switch causes the compiler to issue a warning for any non-ANSI feature

it encounters.

2.3.3.3 Borland's Turbo C++ under MS-DOS

Borland International makes a low-cost MS-DOS C++ compiler called Turbo C++.

This compiler will compile both C and C++ code. We will describe only how to

compile C code. Turbo C++ is ideal for learning. The command line for Turbo C++

is:

C:> tcc -ml -v -N -w -ehello hello.c

The -ml tells Turbo C++ to use the large -memory model. (The PC has a large

number of different memory models. Only expert PC programmers need to know

the difference between the various models. For now, just use the large model until

you know more.)

The -v switch tells Turbo C++ to put debugging information in the program.

Warnings are turned on by -w; stack checking is turned on by -N. Finally -ehello

tells Turbo C++ to create a program named HELLO with hello.c being the name of

the source file. See the Turbo C++ reference manual for a complete list of options.

mywbut.com

Windows Programming

You may wonder why we describe MS-DOS programming when
Windows is widely used. We do so because programming in
Windows is much more complex than programming in
MS-DOS.

For example, to print the message "Hello World" in MS-DOS,
you merely print the message.

In Windows, you must create a window, create a function to
handle the messages from that window, select a font, select a
place to put the font, and output the message.

You must learn to walk before you can run. Therefore, we limit
you to the MS-DOS or Easy-Win (Simplified Windows)
programs in this book.

2.3.3.4 Borland C++ under MS-DOS and Windows

In addition to Turbo C++, Borland International also makes a full-featured,

profe ssional compiler for MS-DOS/Windows called Borland C++. Its command line

is:

C:> bcc -ml -v -N -P -w -ehello hello.c

The command-line options are the same for both Turbo C++ and Borland C++.

2.3.3.5 Microsoft Visual C++

Microsoft Visual C++ is another C++/C compiler for MS-DOS/Windows. To compile,

use the following command line:

C:> cl /AL /Zi /W1 hello.c

The /AL option tells the program to use the large memory model. Debugging is

turned on with the /Zi option and warnings with the /W1 option.

2.3.4 Step 4. Execute the Program

To run the program (on UNIX or MS-DOS/Windows) type:

mywbut.com

% hello

and the message:

Hello World

will appear on the screen.

2.4 Creating a Program Using an Integrated

Development Environment

Integrated Development Environments (IDEs) provide a one -stop shop for

programming. They take a compiler, editor, and debugger and wrap them into one

neat package for the program.

2.4.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each

program that you're working on. In this case, we'll create a directory called HELLO

to hold our hello program.

On MS-DOS type:

C:> MKDIR HELLO

C:> CD HELLO

2.4.2 Step 2. Enter, Compile, and Run Your Program

Using the IDE

Each IDE is a little different, so we've included separate instructions for each one.

2.4.2.1 Turbo C++

1. Start the Turbo C++ IDE with the command:

C:> TC

2. Select the Window|Close All menu item to clear the desktop of any old

windows. We'll want to start clean. The screen should look like Figure 2-2.

mywbut.com

Figure 2-2. Clean desktop

3. Select the Options|Compiler|Code Generation menu item to pull up the Code

Generation dialog as seen in Figure 2-3. Change the memory model to

Large.

Figure 2-3. Code Generation dialog

4. Select the Options|Compiler|Entry/Exit menu item and turn on "Test stack

overflow" as seen in Figure 2 -4.

mywbut.com

Figure 2-4. Entry/Exit Code Generation dialog

5. Select the Options|Compiler|Messages|Display menu item to bring up the

Compiler Messages dialog as seen in Figure 2-5. Select All to display all the

warning messages.

Figure 2-5. Compiler Messages dialog

6. Select the Options|Save menu item to save all the options we've used so far.

7. Select the Project|Open menu item to select a project file. In this case, our

project file is called HELLO.PRJ. The screen should look like Figure 2 -6 when

you're done.

mywbut.com

Figure 2-6. Open Project File dialog

8. Press the INSERT key to add a file to the project. The file we want to add is

HELLO.C as seen in Figure 2-7.

Figure 2-7. Add to Project List dialog

9. Press ESC to get out of the add-file cycle.

10. Press UP-ARROW to go up one line. The line with HELLO.C should now be

highlighted as seen in Figure 2-8.

mywbut.com

Figure 2-8. Hello project

11. Press ENTER to edit this file.

12. Enter Example 2-2.

Example 2-2. hello/hello.c

[File: hello/hello.c]

#include <stdio.h>
int main()
{

 printf("Hello World\n");
 return (0);

}

The results should look like Figure 2 -9.

mywbut.com

Figure 2-9. Finished project

13. Select the Run|Run menu item to execute the program.

14. After the program runs, control returns to the IDE. This control change

means that you can't see what your program output. To see the results of

the program you must switch to the user screen by selecting the

Window|User menu item.

To return to the IDE, press any key. Figure 2-10 shows the output of the

program.

Figure 2-10. User screen

mywbut.com

15. When you are finished, you can save your program by selecting the File|Save

menu item.

16. To exit the IDE, select the File|Quit menu item.

2.4.2.2 Borland C++

1. Create a directory called \HELLO to hold the files for our Hello World program.

You can create a directory using the Windows' File Manager program or by

typing the following command at the MS-DOS prompt:

C:> mkdir \HELLO

2. From Windows, double-click on the "Borland C++" icon to start the IDE.

Select the Window|Close all menu item to clean out any old junk. The

program begins execution and displays a blank workspace as seen in Figure

2-11.

Figure 2-11. Borland C++ initial screen

3. Select the Project|New Project menu item to create a project for our

program. Fill in the "Project Path and Name:" blank with c:\hello\hello.ide.
For the Target Type, select EasyWin(.exe). The Target Model is set to Large.

The results are shown in Figure 2-12.

mywbut.com

Figure 2-12. New Target dialog

4. Click on the Advanced button to bring up the Advanced Options dialog. Clear

the .rc and .def items and set the .c Node items as shown in Figure 2 -13.

5. Click on OK to return to the New Target dialog. Click on OK again to return to

the main window.

Figure 2-13. Advanced Options dialog

mywbut.com

6. Press ALT-F10 to bring up the node submenu shown in Figure 2-14.

Figure 2-14. Target Options submenu

7. Select the Edit node attributes menu item to bring up the dialog shown in

Figure 2 -15. In the Style Sheet blank, select the item Debug Info and

Diagnostics. Click on OK to return to the main window.

Figure 2-15. Node Attributes dialog

mywbut.com

8. Go to the Project Options dialog by selecting the Options|Project Options

menu item. Go down to the Compiler item and click on the + to expand the

options.

Turn on the Test stack overflow option as seen in Figure 2 -16. Click on OK to

save these options.

Figure 2-16. Project Options dialog

9. Click on OK to return to the main window. Press DOWN-ARROW to select the

hello[.C] item in the project as seen in Figure 2-17.

mywbut.com

Figure 2-17. Hello project

10. Press RETURN to start editing the file hello.c. Type in Example 2 -3.

Example 2-3. hello/hello.c

#include <stdio.h>
int main()
{

 printf("Hello World\n");
 return (0);

}

When you finish, your screen will look like Figure 2 -18.

mywbut.com

Figure 2-18. Hello World program

11. Compile and run the program by selecting the Debug|Run menu item. The

program will run and display "Hello World" in a window as seen in Figure

2-19.

Figure 2-19. Hello World program after

execution

mywbut.com

2.4.2.3 Microsoft Visual C++

1. Create a directory called \HELLO to hold the files for our Hello World program.

You can create a directory using the Windows' File Manager program or by

typing the following command at the MS-DOS prompt:

C:> mkdir \HELLO

2. From Windows, double-click on the Microsoft Visual C++ to start the IDE.

Clear out any old junk by selecting the Window|Close All menu item. A blank

workspace will be displayed as seen in Figure 2-20.

Figure 2-20. Microsoft Visual C++ initial screen

3. Click on the Project|New menu item to bring up the New P roject dialog as

shown in Figure 2 -21.

mywbut.com

Figure 2-21. New Project dialog

Fill in the Project Name blank with " \hello \hello.mak". Change the Project

Type to QuickWin application (.EXE).

4. Visual C++ goes to the Edit dialog to allow you to name the source files in

this project (see Figure 2 -22). In this case, we have only file hello.c. Click on

Add to put this in the project and Close to tell Visual C++ that there are no

more files in the program.

mywbut.com

Figure 2-22. Edit Project dialog

5. Select the Options|Project Options menu item to bring up the Project Options

dialog as seen in Figure 2-23.

Figure 2-23. Project Options dialog

Click on the Compiler button to change the compiler options.

mywbut.com

6. Go down to the Custom Options menu item under Category and change the

Warning Level to 4 as seen in Figure 2 -24.

Figure 2-24. C/C++ Compiler Options dialog

7. Select the Memory Model category and change the Model to Large (see

Figure 2 -25).

Figure 2-25. Memory Model options

mywbut.com

8. Close the dialog by clicking on the OK button. You return to the Project

Options dialog. Click on OK to dismiss this dialog as well.

9. Select the File|New menu item to start a new program file. Type in Example

2-4.

Example 2-4. hello/hello.c

[File: hello/hello.c]

#include <stdio.h>
int main()

{
 printf("Hello World\n");

 return (0);

}

Your results should look Figure 2-26.

Figure 2-26. Microsoft Visual C++ with Hello

World entered

10. Use the File|Save As menu item to save the file under the name hello.c.

11. Use the Project|Build menu item to compile the program. The compiler will

output messages as it builds. When the compiler is finished, your screen

should look like Figure 2 -27.

mywbut.com

Figure 2-27. Microsoft Visual C++ project build

screen

12. The program can now be started with the Debug|Go menu item. The results

appear in Figure 2-28.

Figure 2-28. Hello World results

mywbut.com

2.5 Getting Help on UNIX

Most UNIX systems have an online documentation system called the manpages.
These manpages can be read with the man command. (UNIX uses man as an

abbreviation for manual.) To get information about a particular subject, use the

following command:

man subject

For example, to find out about the classes defined in the printf function, you would

type:

man printf

The command also has a keyword search mode:

man -k keyword

To determine the name of manpage with the word "output" in its title, use the
command:

man -k output

2.6 Getting Help in an Integrated Development

Environment

IDEs such as Turbo C++, Borland C++, and Microsoft C++ have a Help menu item.

This item activates a hypertext -based help system.

2.7 IDE Cookbooks

This section contains a brief summary of the commands used to enter, compile, and

execute a simple program using the three IDEs described in this chapter.

2.7.1 Turbo C++

1. Window|Close All Clean out any old junk.

2. Options|Compiler|Code Generation For simple program, use large memory

model.

mywbut.com

Memory Model = Large

3.
Options|Compiler|Entry/Exit

Test stack overflow = On

Turn on test for a common programming

error.

4.
Options|Compiler|Messages|Display

Display warnings = All

Tell compiler that you want all diagnostics

that it can give you.

5. Options|Save Save options.

6.
Project|Open

Project file = program.PRJ

Create a new project.

7.
Insert

Add file program.c

Add program file to project.

8. ESC Get out of "add -file" cycle.

9. UP-ARROW Move to program.c line.

10. RETURN Edit program file.

11. Type in the program Enter text of program.

12. Run|Run Execute program.

13. Window|User Display results of the program.

14. File|Save Save the program.

15. File|Quit Exit Turbo C++ IDE.

2.7.2 Borland C++

1. Window|Close All Clean out any old junk.

2.

Project|New Project

Project Path and Name = c.\

program\program.ide

Target Type = EasyWin(.exe)

Target Model = Large

Create new project.

3.

Click on Advanced button

Set .c Node

Clear .rc and .def

Setup a simple C program.

4. Click on OK
Return to New Target

window.

mywbut.com

5. Click on OK Return to main window.

6. ALT-F10 Select node submenu.

7.
Edit|Node Attributes

Style Sheet = Debug Info and Diagnostics

Turn on debugging.

8. Click on OK button Return to main menu.

9.

Options|Project Options

Click on + under Compiler

Test stack overflow = On

Turn on valuable run-time

test.

10. Click on OK button Save options.

11. Click on OK button Return to main window.

12. DOWN-ARROW Move to program [.c] line.

13. RETURN Edit program file.

14. Type in the program Enter text of program.

15. Debug|Run Run program.

2.7.3 Microsoft Visual C++

1. Window|Close All Clean out any old junk.

2.

Project|New

Project Name =

\program\program.mak

Project Type =

QuickWin application (.EXE)

Start project.

Set up project.

Click on OK button.

Go to Edit dialog.

3. File name = program .c Enter program name.

4. Click on Add button Add program to project.

5. Click on Close button
Tell Visual C++ that there are no more

files.

6. Options|Project Options Get to Project Options dialog.

7. Click on Compiler button Go to C|C++ Compiler Options dialog.

8.
Select Custom Options category

Warning Level = 4

Turn on all warnings.

9. Select the Memory Model category For simple program, use large-memory

model.

mywbut.com

Memory Model = Large

10. Click on OK button Return to Project Options dialog.

11. Click on OK button Return to main window.

12. File|New Open program file.

13. Type in the program Edit program file.

14. File|Save As — File name = program.c Save file.

15. Project|Build Compile program.

16. Debug|Go Execute program.

These instructions are for version 4.0 of Microsoft
Visual C++. Microsoft frequently changes the user
interface from version to version, so these
instructions may require some slight modification.

2.8 Programming Exercises

Exercise 2-1: On your computer, type in the hello program and execute it.

Exercise 2-2: Take several programming examples from any source, enter them

into the computer, and run them.

mywbut.com

