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Matrix Algebra

We review here some of the basic definitions and elementary algebraic operations on matrices.

There are many applications as well as much interesting theory revolving around these con-
cepts, which we encourage you to explore after reviewing this tutorial.

A matrix is simply a retangular array of numbers. For example,

a3 A2 - Aip

Q21 Q22 --- dAa2p
A=

Am1 Am2 -~ Amp

is a m x n matrix (m rows, n columns), where the entry in the i*" row and j* column is a;;.
We often write A = [a;].

Some Terminology

For an n x n square matrix A, the elements a;q, as, ..., a,, form the main diagonal of

the matrix. The sum f: ayr of the elements on the main diagonal of A is called the trace
k=1
of A.

The matrix AT = [a;;] formed by interchanging the rows and columns of A is called the

transpose of A. If AT = A, the matrix A is symmetric.

Example

LetB:[ 6 ;

4 —6]' The trace of B is 6 + (—6) = 0.

The transpose of B is BT = l S :g 1

Addition and Subtraction of Matrices

To add or subtract two matrices of the same size, simply add or subtract corresponding
entries. That is, if B = [b;;] and C' = [¢;],

B—i‘C:[bij—i—Cij] and B—C:[bi]’—cl’j].
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Example

6 9 1 2
ForB:[_4 _61andC:[_1 0],

6+ 1 9+2 | | 7T 11
—44+(-1) -6+0| | -5 —6

reo-[ 22t )15 1)

pic-|

—4—(=1) =6-0 -3 —6

The m x n zero matrix, 0, for which every entry is 0, has the property that for any m xn
matrix A,

A+0=A.

Scalar Multiplication

To multiply a matrix A by a number ¢ (a “scalar”), multiply each entry of A by ¢. That is,

cA = [ca;j].

Example
: ) 6 9 .
Using the matrix B = | i —6 from the previous example,
6 9 18 27
m=s| 3 5= %)

Matrix Multiplication

Let X be and m x n matrix and Y be an n x p matrix. Then the product XY is the m x p
matrix whose (i, j)'* entry is given by

n
Z TikYkj-
k=1

Notes

e The product XY is only defined if the number of columns of X is the same as the
number of rows of Y.

e XY and Y X may very well not both be defined. If they both do exist, they are not
necessarily equal and in fact might not even be of the same size.
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Example
For the matrices B = [ _i _2 ] and C' = [ _i (2) ],
_| 6 9 L2 _ [ (6)1)+(9)(=1) (6)(2)+(9)(0) | _ | -3 12
-367—‘{ 4 -6 }[<—1 o} _'{(—4X1)+(—6X—&) (—4X2)+(—6X0)}'_ [ 2 —8}
while

0 is called the identity matrix /. For example, the 3 x 3 matrix is

identity matrix has the property that if A is any n X n matrix,

Al =TA = A.

Inverse of a Matrix

Start with an n x n matrix X. Suppose the n x n matrix Y has the property that
XY =YX=1

Then Y is called the inverse of X and is denoted X 1.

Notes

e Only square matrices X can have inverses. If X is not square, then for any Y the
product XY will not be the same size matrix as the product YX (if we're lucky enough
even to have both products exist!).

e Not every square matrix has an inverse. If an inverse exists, it is unique.

e If a matrix has an inverse, the matrix is said to be invertible.

The inverse of a 2 x 2 matrix is simple to calculate:

|la b a1 d —b
IfA—[Cd],thenA _ad—bc[—c a]’
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Example

The inverse of C' = [ _1 (2) 1 1S

ey - FE R PRV
Note that CC~! = [_1 0H1/2 1_/;] “) (1)1

and €70 = [1/2 1/5“—1 31:“) (1)1

6
4 —6

Matrix B = l _ ] does not have an inverse.

Determinant of a Matrix

6

How did we know that B = [ 4

9 :
6 does not have an inverse?

The determinant of A, det A, is a number with the property that A is invertible if and
only if det A # 0.

For a 2 x 2 matrix A = l i 21, det A = ad — be.
Example
For B = l _2 _2 ], det B = (6)(—6)—(9)(—4) = —36+436 = 0, so B is not invertible.

That is, B does not have an inverse.

For a 3 x 3 (or larger) matrix A, things are a little more complicated:

Denote by M;;(A) the determinant of the matrix formed by deleting row ¢ and column
j for A.

Define ¢;;(A) = (—=1)"* M;;(A) to be the (4,7) cofactor of A.

Then we can compute det A by the Laplace Expansion along any row or column of

A:

Along row i:

det A = a;1Ci1 (A) + az’2ci2(A> +...+ CLmCm(A)
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Along column j:

det A = (llelj(A) + anCQj(A) +.ooF anjcnj<A>'

Example

Let A =
2 1 6

Along the first row,

det A = (1)[(0)(6) = (=D)(D)] = (=1 [(1)(6) = (=1)(2)] + 3 [(1)(1) = (0)(2)]
= (112)(1)+(1)(8)+(3)(1)

Computing det A along the second column instead,

det A = —(=1)[(1)(6) = (=1)(2)] + (0) [(1)(6) — (3)(2)] = 1[(1)(=1) = 3)(1)]
(1)(8) + (0)(0) = (1)(—4)

= 12 as expected.

1 -1 3
1 0 —11.

Key Concepts

Let A= [aij] and B = [b”]

e Transpose AT of A:
AT = [aji]~

Trace of A:

n
Z age (for an n x n matrix A).
k=1

Identity Matrix I:

the n X m matrix with 1’s on the main digonal and 0’s elsewhere.

A+ B and A — B:

A+B = [CLij —sz]]
A—B= [CLij — bl]]

Scalar Multiplication:
cA = [ca;j].
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e Matrix Product AB:

(4,7)" entry is > auby;
F=1

(for an m x n matrix A and an n X p matrix B).

e Inverse A~ ! of A:
A1 satisfies AA™l = A"1A=1.

a b
a0

_ d —b
thenAl:adibc[—c a]'

o Determinant det A:

If A= [a b ] det A = ad — be.
c d
In general,

along row i:

det A = ajcin(A) + aincin(A) + ... + Gincin(A).
along column j:

det A = ayjc15(A) + ag;Coi(A) + ... + ayjcni(A).


http://www.math.hmc.edu/calculus/underconstruction
http://www.math.hmc.edu/calculus/tutorials



