
11 Console
 Input/Output

• Types of I/O
• Console I/O Functions

Formatted Console I/O Functions
sprintf() and sscanf() Functions
Unformatted Console I/O Functions

• Summary
• Exercise

mywbut.com

1

s mentioned in the first chapter, Dennis Ritchie wanted C
to remain compact. In keeping with this intention he
deliberately omitted everything related with Input/Output

(I/O) from his definition of the language. Thus, C simply has no
provision for receiving data from any of the input devices (like say
keyboard, disk, etc.), or for sending data to the output devices (like
say VDU, disk, etc.). Then how do we manage I/O, and how is it
that we were we able to use printf() and scanf() if C has nothing
to offer for I/O? This is what we intend to explore in this chapter.

A

Types of I/O
Though C has no provision for I/O, it of course has to be dealt with
at some point or the other. There is not much use writing a
program that spends all its time telling itself a secret. Each
Operating System has its own facility for inputting and outputting
data from and to the files and devices. It’s a simple matter for a
system programmer to write a few small programs that would link
the C compiler for particular Operating system’s I/O facilities.

The developers of C Compilers do just that. They write several
standard I/O functions and put them in libraries. These libraries are
available with all C compilers. Whichever C compiler you are
using it’s almost certain that you have access to a library of I/O
functions.

Do understand that the I/O facilities with different operating
systems would be different. Thus, the way one OS displays output
on screen may be different than the way another OS does it. For
example, the standard library function printf() for DOS-based C
compiler has been written keeping in mind the way DOS outputs
characters to screen. Similarly, the printf() function for a Unix-
based compiler has been written keeping in mind the way Unix
outputs characters to screen. We as programmers do not have to
bother about which printf() has been written in what manner. We
should just use printf() and it would take care of the rest of the

mywbut.com

2

details that are OS dependent. Same is true about all other standard
library functions available for I/O.

There are numerous library functions available for I/O. These can
be classified into three broad categories:

(a) Console I/O functions - Functions to receive input
from keyboard and write
output to VDU.

(b) File I/O functions - Functions to perform I/O
operations on a floppy disk or
hard disk.

In this chapter we would be discussing only Console I/O functions.
File I/O functions would be discussed in Chapter 12.

Console I/O Functions
The screen and keyboard together are called a console. Console
I/O functions can be further classified into two categories—
formatted and unformatted console I/O functions. The basic
difference between them is that the formatted functions allow the
input read from the keyboard or the output displayed on the VDU
to be formatted as per our requirements. For example, if values of
average marks and percentage marks are to be displayed on the
screen, then the details like where this output would appear on the
screen, how many spaces would be present between the two
values, the number of places after the decimal points, etc. can be
controlled using formatted functions. The functions available
under each of these two categories are shown in Figure 11.1. Now
let us discuss these console I/O functions in detail.

mywbut.com

3

 Console Input/Output functions

 Formatted functions Unformatted functions

 Type Input Output Type Input Output

 char scanf() printf() char getch()
getche()
getchar()

putch()
putchar()

 int scanf() printf() int - -
 float scanf() printf() float - -
 string scanf() printf() string gets() puts()

Figure 11.1

Formatted Console I/O Functions

As can be seen from Figure 11.1 the functions printf(), and
scanf() fall under the category of formatted console I/O functions.
These functions allow us to supply the input in a fixed format and
let us obtain the output in the specified form. Let us discuss these
functions one by one.

We have talked a lot about printf(), used it regularly, but without
having introduced it formally. Well, better late than never. Its
general form looks like this...

printf ("format string", list of variables) ;

The format string can contain:

Characters that are simply printed as they are
Conversion specifications that begin with a % sign

(a)
(b)

mywbut.com

4

(c) Escape sequences that begin with a \ sign

For example, look at the following program:

main()
{
 int avg = 346 ;
 float per = 69.2 ;
 printf ("Average = %d\nPercentage = %f", avg, per) ;
}

The output of the program would be...
Average = 346
Percentage = 69.200000
How does printf() function interpret the contents of the format
string. For this it examines the format string from left to right. So
long as it doesn’t come across either a % or a \ it continues to
dump the characters that it encounters, on to the screen. In this
example Average = is dumped on the screen. The moment it
comes across a conversion specification in the format string it
picks up the first variable in the list of variables and prints its value
in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when
an escape sequence is met it takes the appropriate action. In this
example, the moment \n is met it places the cursor at the beginning
of the next line. This process continues till the end of format string
is not reached.

Format Specifications

The %d and %f used in the printf() are called format specifiers.
They tell printf() to print the value of avg as a decimal integer
and the value of per as a float. Following is the list of format
specifiers that can be used with the printf() function.

mywbut.com

5

 Data type Format specifier

 Integer short signed %d or %I
 short unsigned %u
 long singed %ld
 long unsigned %lu
 unsigned hexadecimal %x
 unsigned octal %o
 Real float %f
 double %lf
 Character signed character %c
 unsigned character %c
 String %s

Figure 11.2

We can provide following optional specifiers in the format
specifications.

 Specifier Description

 dd Digits specifying field width
 . Decimal point separating field width from precision

(precision stands for the number of places after the
decimal point)

 dd Digits specifying precision
 - Minus sign for left justifying the output in the

specified field width

Figure 11.3

mywbut.com

6

Now a short explanation about these optional format specifiers.
The field-width specifier tells printf() how many columns on
screen should be used while printing a value. For example, %10d
says, “print the variable as a decimal integer in a field of 10
columns”. If the value to be printed happens not to fill up the
entire field, the value is right justified and is padded with blanks
on the left. If we include the minus sign in format specifier (as in
%-10d), this means left justification is desired and the value will
be padded with blanks on the right. Here is an example that should
make this point clear.

main()
{
 int weight = 63 ;

 printf ("\nweight is %d kg", weight) ;
 printf ("\nweight is %2d kg", weight) ;
 printf ("\nweight is %4d kg", weight) ;
 printf ("\nweight is %6d kg", weight) ;
 printf ("\nweight is %-6d kg", weight) ;
}

The output of the program would look like this ...

Columns 0123456789012345678901234567890
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg

Specifying the field width can be useful in creating tables of
numeric values, as the following program demonstrates.

main()
{
 printf ("\n%f %f %f", 5.0, 13.5, 133.9) ;

mywbut.com

7

 printf ("\n%f %f %f", 305.0, 1200.9, 3005.3) ;
}

And here is the output...

5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000

Even though the numbers have been printed, the numbers have not
been lined up properly and hence are hard to read. A better way
would be something like this...

main()
{
 printf ("\n%10.1f %10.1f %10.1f", 5.0, 13.5, 133.9) ;
 printf ("\n%10.1f %10.1f %10.1f", 305.0, 1200.9, 3005.3);
}

This results into a much better output...

01234567890123456789012345678901
 5.0 13.5 133.9
 305.0 1200.9 3005.3

The format specifiers could be used even while displaying a string
of characters. The following program would clarify this point:

/* Formatting strings with printf() */
main()
{
 char firstname1[] = "Sandy" ;
 char surname1[] = "Malya" ;
 char firstname2[] = "AjayKumar" ;
 char surname2[] = "Gurubaxani" ;

 printf ("\n%20s%20s", firstname1, surname1) ;
 printf ("\n%20s%20s", firstname2, surname2) ;

mywbut.com

8

}

And here’s the output...

012345678901234567890123456789012345678901234567890
 Sandy Malya
 AjayKumar Gurubaxani

The format specifier %20s reserves 20 columns for printing a
string and then prints the string in these 20 columns with right
justification. This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left justified
the string.

Escape Sequences

We saw earlier how the newline character, \n, when inserted in a
printf()’s format string, takes the cursor to the beginning of the
next line. The newline character is an ‘escape sequence’, so called
because the backslash symbol (\) is considered as an ‘escape’
character—it causes an escape from the normal interpretation of a
string, so that the next character is recognized as one having a
special meaning.

The following example shows usage of \n and a new escape
sequence \t, called ‘tab’. A \t moves the cursor to the next tab stop.
A 80-column screen usually has 10 tab stops. In other words, the
screen is divided into 10 zones of 8 columns each. Printing a tab
takes the cursor to the beginning of next printing zone. For
example, if cursor is positioned in column 5, then printing a tab
takes it to column 8.

main()
{
 printf ("You\tmust\tbe\tcrazy\nto\thate\tthis\tbook") ;
}

mywbut.com

9

And here’s the output...

 1 2 3 4
01234567890123456789012345678901234567890
You must be crazy
to hate this book

The \n character causes a new line to begin following ‘crazy’. The
tab and newline are probably the most commonly used escape
sequences, but there are others as well. Figure 11.4 shows a
complete list of these escape sequences.

 Esc. Seq. Purpose Esc. Seq. Purpose

 \n New line \t Tab
 \b Backspace \r Carriage return
 \f Form feed \a Alert
 \’ Single quote \” Double quote
 \\ Backslash

Figure 11.4

The first few of these escape sequences are more or less self-
explanatory. \b moves the cursor one position to the left of its
current position. \r takes the cursor to the beginning of the line in
which it is currently placed. \a alerts the user by sounding the
speaker inside the computer. Form feed advances the computer
stationery attached to the printer to the top of the next page.
Characters that are ordinarily used as delimiters... the single quote,
double quote, and the backslash can be printed by preceding them
with the backslash. Thus, the statement,

printf ("He said, \"Let's do it!\"") ;

mywbut.com

10

will print...

He said, "Let's do it!"

So far we have been describing printf()’s specification as if we
are forced to use only %d for an integer, only %c for a char, only
%s for a string and so on. This is not true at all. In fact, printf()
uses the specification that we mention and attempts to perform the
specified conversion, and does its best to produce a proper result.
Sometimes the result is nonsensical, as in case when we ask it to
print a string using %d. Sometimes the result is useful, as in the
case we ask printf() to print ASCII value of a character using
%d. Sometimes the result is disastrous and the entire program
blows up.

The following program shows a few of these conversions, some
sensible, some weird.

main()
{
 char ch = 'z' ;
 int i = 125 ;
 float a = 12.55 ;
 char s[] = "hello there !" ;

 printf ("\n%c %d %f", ch, ch, ch) ;
 printf ("\n%s %d %f", s, s, s) ;
 printf ("\n%c %d %f",i ,i, i) ;
 printf ("\n%f %d\n", a, a) ;
}

And here’s the output ...

z 122 -9362831782501783000000000000000000000000000.000000
hello there ! 3280 -
9362831782501783000000000000000000000000000.000000
} 125 -9362831782501783000000000000000000000000000.000000

mywbut.com

11

12.550000 0

I would leave it to you to analyze the results by yourselves. Some
of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to
enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:

scanf ("format string", list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables (addresses are
obtained by using ‘&’ the ‘address of’ operator) to scanf()
function. This is necessary because the values received from
keyboard must be dropped into variables corresponding to these
addresses. The values that are supplied through the keyboard must
be separated by either blank(s), tab(s), or newline(s). Do not
include these escape sequences in the format string.

All the format specifications that we learnt in printf() function are
applicable to scanf() function as well.

sprintf() and sscanf() Functions

The sprintf() function works similar to the printf() function
except for one small difference. Instead of sending the output to
the screen as printf() does, this function writes the output to an
array of characters. The following program illustrates this.

main()
{

mywbut.com

12

 int i = 10 ;
 char ch = 'A' ;
 float a = 3.14 ;
 char str[20] ;

 printf ("\n%d %c %f", i, ch, a) ;
 sprintf (str, "%d %c %f", i, ch, a) ;
 printf ("\n%s", str) ;
}

In this program the printf() prints out the values of i, ch and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn’t get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the second printf() statement.

The counterpart of sprintf() is the sscanf() function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified formats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using sscanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console I/O Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
those which handle one character at a time.

So far for input we have consistently used the scanf() function.
However, for some situations the scanf() function has one glaring
weakness... you need to hit the Enter key before the function can

mywbut.com

13

digest what you have typed. However, we often want a function
that will read a single character the instant it is typed without
waiting for the Enter key to be hit. getch() and getche() are two
functions which serve this purpose. These functions return the
character that has been most recently typed. The ‘e’ in getche()
function means it echoes (displays) the character that you typed to
the screen. As against this getch() just returns the character that
you typed without echoing it on the screen. getchar() works
similarly and echo’s the character that you typed on the screen, but
unfortunately requires Enter key to be typed following the
character that you typed. The difference between getchar() and
fgetchar() is that the former is a macro whereas the latter is a
function. Here is a sample program that illustrates the use of these
functions.

main()
{
 char ch ;

 printf ("\nPress any key to continue") ;
 getch() ; /* will not echo the character */

 printf ("\nType any character") ;
 ch = getche() ; /* will echo the character typed */

 printf ("\nType any character") ;
 getchar() ; /* will echo character, must be followed by enter key */
 printf ("\nContinue Y/N") ;
 fgetchar() ; /* will echo character, must be followed by enter key */
}

And here is a sample run of this program...

Press any key to continue
Type any character B
Type any character W
Continue Y/N Y

mywbut.com

14

putch() and putchar() form the other side of the coin. They print
a character on the screen. As far as the working of putch()
putchar() and fputchar() is concerned it’s exactly same. The
following program illustrates this.

main()
{
 char ch = 'A' ;

 putch (ch) ;
 putchar (ch) ;
 fputchar (ch) ;
 putch ('Z') ;
 putchar ('Z') ;
 fputchar ('Z') ;
}

And here is the output...

AAAZZZ

The limitation of putch(), putchar() and fputchar() is that they
can output only one character at a time.

gets() and puts()

gets() receives a string from the keyboard. Why is it needed?
Because scanf() function has some limitations while receiving
string of characters, as the following example illustrates...

main()
{
 char name[50] ;

 printf ("\nEnter name ") ;
 scanf ("%s", name) ;
 printf ("%s", name) ;

mywbut.com

15

}

And here is the output...

Enter name Jonty Rhodes
Jonty

Surprised? Where did “Rhodes” go? It never got stored in the array
name[], because the moment the blank was typed after “Jonty”
scanf() assumed that the name being entered has ended. The result
is that there is no way (at least not without a lot of trouble on the
programmer’s part) to enter a multi-word string into a single
variable (name in this case) using scanf(). The solution to this
problem is to use gets() function. As said earlier, it gets a string
from the keyboard. It is terminated when an Enter key is hit. Thus,
spaces and tabs are perfectly acceptable as part of the input string.
More exactly, gets() gets a newline (\n) terminated string of
characters from the keyboard and replaces the \n with a \0.

The puts() function works exactly opposite to gets() function. It
outputs a string to the screen.

Here is a program which illustrates the usage of these functions:

main()
{
 char footballer[40] ;

 puts ("Enter name") ;
 gets (footballer) ; /* sends base address of array */
 puts ("Happy footballing!") ;
 puts (footballer) ;
}

Following is the sample output:

Enter name

mywbut.com

16

Jonty Rhodes
Happy footballing!
Jonty Rhodes

Why did we use two puts() functions to print “Happy
footballing!” and “Jonty Rhodes”? Because, unlike printf(),
puts() can output only one string at a time. If we attempt to print
two strings using puts(), only the first one gets printed. Similarly,
unlike scanf(), gets() can be used to read only one string at a
time.

Summary
(a)
(b)
(c)

(d)

(e)

(f)

There is no keyword available in C for doing input/output.
All I/O in C is done using standard library functions.
There are several functions available for performing console
input/output.
The formatted console I/O functions can force the user to
receive the input in a fixed format and display the output in a
fixed format.
There are several format specifiers and escape sequences
available to format input and output.
Unformatted console I/O functions work faster since they do
not have the overheads of formatting the input or output.

Exercise

[A] What would be the output of the following programs:

(a) main()
{
 char ch ;
 ch = getchar() ;
 if (islower (ch))
 putchar (toupper (ch)) ;
 else
 putchar (tolower (ch)) ;

mywbut.com

17

}

(b) main()
{
 int i = 2 ;
 float f = 2.5367 ;
 char str[] = "Life is like that" ;

 printf ("\n%4d\t%3.3f\t%4s", i, f, str) ;
}

(c) main()
{
 printf ("More often than \b\b not \rthe person who \
 wins is the one who thinks he can!") ;
}

(d) char p[] = "The sixth sick sheikh's sixth ship is sick" ;
main()
{
 int i = 0 ;
 while (p[i] != '\0')
 {
 putch (p[i]) ;
 i++ ;
 }
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 int i ;
 char a[] = "Hello" ;
 while (a != '\0')
 {
 printf ("%c", *a) ;
 a++ ;
 }
}

mywbut.com

18

(b) main()
{
 double dval ;
 scanf ("%f", &dval) ;
 printf ("\nDouble Value = %lf", dval) ;
}

(c) main()
{
 int ival ;
 scanf ("%d\n", &n) ;
 printf ("\nInteger Value = %d", ival) ;
}

(d) main()
{
 char *mess[5] ;
 for (i = 0 ; i < 5 ; i++)
 scanf ("%s", mess[i]) ;
}

(e) main()
{
 int dd, mm, yy ;
 printf ("\nEnter day, month and year\n") ;
 scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;
 printf ("The date is: %d - %d - %d", dd, mm, yy) ;
}

(f) main()
{
 char text ;
 sprintf (text, "%4d\t%2.2f\n%s", 12, 3.452, "Merry Go Round") ;
 printf ("\n%s", text) ;
}

(g) main()
{
 char buffer[50] ;

mywbut.com

19

 int no = 97;
 double val = 2.34174 ;
 char name[10] = "Shweta" ;

 sprintf (buffer, "%d %lf %s", no, val, name) ;
 printf ("\n%s", buffer) ;
 sscanf (buffer, "%4d %2.2lf %s", &no, &val, name) ;
 printf ("\n%s", buffer) ;
 printf ("\n%d %lf %s", no, val, name) ;

}

[C] Answer the following:

(a)

(b)

(c)

To receive the string "We have got the guts, you get the
glory!!" in an array char str[100] which of the following
functions would you use?

1. scanf ("%s", str) ;
2. gets (str) ;
3. getche (str) ;
4. fgetchar (str) ;

Which function would you use if a single key were to be
received through the keyboard?

1. scanf()
2. gets()
3. getche()
4. getchar()

If an integer is to be entered through the keyboard, which
function would you use?

1. scanf()
2. gets()
3. getche()
4. getchar()

mywbut.com

20

(d)

(e)

(f)

(g)

(a)

(b)

If a character string is to be received through the keyboard
which function would work faster?

1. scanf()
2. gets()

What is the difference between getchar(), fgetchar(),
getch() and getche()?

The format string of a printf() function can contain:

1. Characters, format specifications and escape sequences
2. Character, integers and floats
3. Strings, integers and escape sequences
4. Inverted commas, percentage sign and backslash character

A field-width specifier in a printf() function:

1. Controls the margins of the program listing
2. Specifies the maximum value of a number
3. Controls the size of type used to print numbers
4. Specifies how many columns will be used to print the

number

[D] Answer the following:

Write down two functions xgets() and xputs() which work
similar to the standard library functions gets() and puts().

Write down a function getint(), which would receive a
numeric string from the keyboard, convert it to an integer
number and return the integer to the calling function. A
sample usage of getint() is shown below:

main()
{
 int a ;

mywbut.com

21

 a = getint() ;
 printf ("you entered %d", a)
}

mywbut.com

22

