INTRODUCTION TO VLSI DESIGN

1.1 INTRODUCTION

The word digital has made a dramatic impact on sngiety. More significant is a

continuous trend towards digital solutions in atas —from electronic instrumentation,
control, data manipulation, signals processingg mmunications, etc., to consumer
electronics. Development of such solutions has Ipemssible due to good digital system

design and modeling techniques.

MICROELECTRONIC EVOLUTION

Year 1947 1950 1961 1966 1971 1930 1990 2000
Techrology |Inven™n |Discrete | 551 MSI | LSI WLST | LLSI G551
Approximate
SeugON | S| 1 100- | 1000- [20000y o] >
Chip 10 N 10
1000 | 20000 |F Millienf oo T illion
Typical - ~ourter| 8Bit | 16-32 | Special
Diodes | Logic Mp | Bit MP
Products Gates | 4, Proces
Trarsistors e RO & SO
Fﬂ: Adders R.AM Sophisticated
Peripherals Mﬂ:

1.1.1 VLSI DESIGN

The complexity of VLSI being designed and desigard used today makes the manual
approach to design impractical. Design automatsaihé order of the day. With the rapid
technological developments in the last two decattes,status of VLSI technology is

characterized by the following:

% A steady increase in the size and hence the furddtty of the ICs.

A steady reduction in feature size and hence isergathe speed of operation as
well as gate or transistor density.

« A steady improvement in the predictability of ciitdbehavior.
% A steady increase in the variety and size of softvt@ols for VLSI design.

The above developments have resulted in a prdiiéeraf approaches to VLSI design.

1.1.2 VLSI DESIGN FLOW

The design process, at various levels, is usuaibjuionary in nature. It starts with a
given set of requirements. Initial design is todeveloped and test impact analyst must
be considered. The Y-chart (first introduced by@ajski) is shown in below figurel
illustrates a design flow for most logic chips,ngsdesign activities on the three different

axes (domains). Y chart of three major domaingy Hre:

= Behavioral domain
= Structural domain

= Geometrical layout domain

Srruciural Tt Exhasicral
Domae ﬂ-""-f. . "'H,__ Jama -
T I.:.ll" __,.,-'-'---_— T x""-\._\:__.-"_.

b __[::-:l'.l.‘ — . T Al
II "-\-____ Hga e \%{-:-c
] "‘:-\.--I — T — 5-':-::- .
| I H?:' e e Eh:.‘r‘:_-__ 5 B P
= - e
I Hiﬁ'}.'ﬂ. LES _A'-._:.:.:-\.-.] l
i | I |. — LA |
I| II i l'. I
] L] b - i

\ s -
Hﬁ,qq_h -

Coos—alrcd” Lasoit
Doindin
Figure 1 Typical VLSI design flown three domains (Y-chart representation)

The design flow starts from the algorithm that déss the behavior of the target chip.
The corresponding architecture of the processdirgs defined. It is mapped onto the
chip surface by floor planning. The next design letton in the behavioral domain
defines finite state machines (FSMs) which arecstimally implemented with functional
modules such as registers and arithmetic logicsufALUs). These modules are then
geometrically placed onto the chip surface usingDC#ols for automatic module
placement followed by routing, with a goal of mimbing inter- connects area and signal

delays.

The third evolution starts with a behavioral moddéscription. Individual modules are
then implemented with leaf cells. At this stage tigp is described in terms of logic
gates (leaf cells), which can be placed and intereoted by using a cell placement &
routing program. The last evolution involves a dethBoolean description of leaf cells
followed by a transistor level implementation offlecells and mask generation. In
standard-cell based design, leaf cells are alrpaghdesigned and stored in a library for

logic design use.

1.1.3 ABSTRACTION MODEL

The model divides the whole design cycle into wasidomains (see figure 2) with such
an abstraction through a division process the desigarried out in different layers. The
designer at one layer can function without bothgeghbout the layers above or below. The
thick horizontal lines separating the layers infilgare signify the compartmentalization.
As an example, le us consider design at the gats. |€he circuit to be designed would
be described in terms of truth tables and stabteta With these as available inputs, he
has to express them as Boolean logic equation easlize them i8n terms of gates and
flip-flops. In turn these form the inputs to theyda immediately below.
Compartmentalization of the approach to designhi manner described here is the
essence of abstraction; it is the basics for thveldpment and d use of CAD tools in the

design at various levels.

1.1.4 ASIC DESIGN FLOW

As with any other technical activity, developmemtam ASIC starts with an idea and

takes tangible shape through the stages of developas shown in figure 3 and shown
in detail in figure 4.The first step in the procés$o expand the idea in terms of behavior
of the target circuit. Through stages of prograngnihe same is fully developed into a

design description- in terms of well defined staddaonstructs and conventions.

Structural domain Behavioral domain

Processing core : nondigital,

System (Performance
nonelectronic systems vificati

Microprocessors, » =i . .
e = E C | Micro- LPC b
memories, 10 devices 1p (Micro-operations)
Registers, ALU, F/ Register \
miltipliers { Frnth tables, siate tables)
Ciates, flip-flops }./ Giate { Boolean eguations) \
[ransistors, L, B, C —}/ Circuit {differential equations) \
Cieometric objects —h-/ Silicon (mone) \

Figure 2 Design domain and level§ @abstraction

ldea

Design description

—_—— =

Smmulation Synthess
‘ |
e b
Physical
design
Figure 3 Major activities in ASIC desig

The design is tested through a simulation proaéss;to check, verify, and ensure that
what is wanted is what is described. Simulatiomasried out through dedicated tools
.with every simulation results are studied to idfgrerrors in the design description. The
errors are corrected and another simulation rwaiged out. Simulation and changes to
design description together form a cyclic iteratprecess, repeated until an error —free
design is evolved.

Design description is an activindependent of the target technology or
manufacturer. It results in a description of thgitdi circuit. To translate it into a tangible
circuit, one goes through the physical design mecdhe same constitutes a set of
activities closely linked to the manufacturer ane target technology.

1.1.5 DESIGN DESCRIPTION

The design is carried out in stages. The processan$forming the idea into a detailed
circuit description in terms of the elementary gitccomponents constitutes design
description. The final circuit of such an IC carvéaip to a billion such components; it is

arrived in a step-by-step manner.

The first stepemolving the design description is to describe the
circuit in terms of its behavior. The descriptiayoks like a program in a high level
language like C. once the behavior level designcrijgson is ready, it is tested
extensively with the help of simulation tool; itedks and confirms that all the expected
functions are carried out satisfactorily. If ne@egs this behavioral level routine is
edited, modified, and rerun — all done manuallynaly, one has a design for the
expected system- described at the behavioral leVieé behavioral constructs not
supported by the synthesis tools replaced by data &nd gate level constructs. To
surmise, the designer has to develop synthesizables for his design.

Logeal design
{Scope ol HDL)

'-"-'-'-‘ L 2 2 2 2 J 3 31 31 B ;7 3 3 I K | -------.
Scope ol

i hav: — I
: BLE:;:;?:_I::LI f simulation ool * :
- |] |] .
! '
= - .f_'umpih: J/edit— Simulate ;I :
! ¥ : |
! '
] Diata flow level . o
: desenplion . .
] I 1 Compile / edit— Simulate :
: . -FI 1
|] |] '
1 Gate level]
I description ' ' :
- y - : I » "Compile / edit =M Simulate — {
Synthesis | e I i
i ¥ plimization i
FPGA based I Switch level]
design descrnplion :
I torunte .hl p Compile / edit — Simulake 1
Prototype [Py pp—— . |

¥ .
(Final crrewt } System partiionmg |
¥

| Floor planning I

Placement

Routing

Figure 4 ASIC design and development flaw

FL‘H[LI re exracton |

Ly
1
1
]
]
1
L Physical design

The design at the behavioral level is to be elaedran terms of known and

acknowledged functional blocks. It forms the negtailed level of design description.
Once again the design is to be tested through atmal and iteratively corrected for
errors. The elaboration can be continued one orgteps further. It leads to a detailed

design description in terms of logic gates anddistar switches.

1.1.6 OPTIMIZATION

The circuit at the gate level- in terms of the gaaad flip-flops- can be redundant in
nature. The same can be minimized with the helmioimization tools. The minimized

design is converted to a circuit in terms of thétcdwlevels cells from standard libraries
provided by the foundries. The cell based desigyeterated by the tool is the last step in

the design process; it forms the input to the fegel of physical design.

1.1.7 POST LAYOUT SIMULATION

Once the placement and routing are completed tHerpgance specifications like silicon
area, power consumed, path delays, can be comptged:alent circuit can be extracted
at the component level and the performance anatgsiged out. This constitutes the final
stage called “verification”. One may have to gootigh the placement and routing

activity once again to improve performance.

1.1.8 CRITICAL SUBSYSTEMS

The design may have critical subsystems. Theiopednce may be crucial to the overall
performance; in other words, to improve the syspariormance substantially, one may
have to design such subsystems afresh. The designnmay imply redefinition of the

basic feature size of the component, componentgdesand placement of the
components, or routing done separately and spaltyfiéor the sub systems. A set of

masks used in the foundry may have to be donesh for the purpose.

1.2 EMERGENCE OF HDLs

For a long time, programming languages such as FR, Pascal, and C were being
used to describe computer programs that were sgguém nature. Similarly, in the

digital design field, designers felt the need fostandard language to describe digital

circuits. Thus, Hardware Description Languages (HPDtome into existence. HDLs

allowed the designers to model the concurrencya@tgss found in hardware elements.

1.2.1IMPORTANCE OF HDLs

Designers can be described at a very abstract bgvate of HDLs. Designers can write
their RTL description without choosing a specitchnology. Logic synthesis tools can

automatically convert the design to any fabricatechnology.

By describing designs in HDLs, functional verificat of the design can be done early in
the design cycle. Since designers work at the REMel|l they can optimize and modify
the RTL description until it meets the desired tiomality. Designing with HDLs is

analogous to computer programming. A textual dpson with comments is an easier

way to develop and debug circuits.

1.2.2HARDWARE DESCRIPTIVE LANGUAGE :

There are two main hardware descriptive languagese in the industry today for Very
Large Scale Integration (VLSI) of chips. They are:

* Verilog HDL
« VHDL

1.2.3 OVERVIEW OF VERILOG HDL:

Verilog HDL is a Hardware Description Language (HDIA Hardware Description

Language is a language used to describe a diggtdrs, for example, a computer or a
component of a computer. One may describe a Higystem at several levels. For
example, an HDL might describe the layout of theewi resistors and transistors on an
Integrated Circuit (IC) chip, i.e., and the switelvel. Or, it might describe the logical
gates and flip flops in a digital system, i.e., thate level. An even higher level
describes the registers and the transfers of \@ofanformation between registers. This

is called the Register Transfer Level (RTL). Vegilsupports all of these levels. The
industry is currently split on which is better. Mefeel that Verilog is easier to learn and
use than VHDL.

Verilog was introduced in 1985 by Gateway Desigst&y Corporation, now a part of

Cadence Design Systems, Inc.’s Systems Division.

Verilog HDL allows a hardware desgno describe designs at a high level of
abstraction such as at the architectural or behavitevel as well as the lower
implementation levels (i.e. , gate and switch lsydeading to Very Large Scale
Integration (VLSI) Integrated Circuits (IC) layouasd chip fabrication. A primary use

of HDLs is the simulation of designs before theigiesr must commit to fabrication.

1.2.4 POPULARITY OF VERILOG HDL:

+ Verilog HDL is a general purpose HDL that is easy$e and learn. It is similar

in syntax to the C programming language.

+ Verilog HDL allows different levels of abstractiom be mixed in the same model.

% Most popular logic synthesis tool support Verilo@H This makes it the
language of choice for designers.

All fabrication venders provide Verilog HDL libras for post logic synthesis simulation.
Thus, designing a chip in Verilog HDL allows thedest choice of venders.

1.2.5 OVERVIEW OF VHDL:

As the size and the complexity of digital systeroré@ases, more computer aided design
tools are introduced into the hardware design m®c&€he early papered pencil design
methods have given way to sophisticated designyemrification and automatic

hardware generation tools. The newest addition his tlesign methodologies the

10

introduction of hardware description language (HBkjually the use of this language is
not new languages such as CDI, ISP and AHPL haea lsed for last some years.
However, their primary application has been theification of designs architecture.
They do not have the capability to model desigrhwithigh degree of accuracy that is,
their timing model is not precise and/or their laage construct implies a certain
hardware structure newer languages such as VHDE hawe universal timing models

and imply no particular hardware structure.

Hardware description languages have iaan
applications documenting a design and modelingsdod documentation of a design
helps to ensure design accuracy and design patyalSince a simulator supports them
inherent in a HDL description can be used to vadida design. Prototyping of
complicated system is extremely expansive, andgtied of those concerned with the
development of hardware languages is to replasepttutotyping process with validation

through simulation and silicon compilation.

Once an entity has been modeled, it needs to be
validated by the VHDL system. A typical VHDL systetonsists of an analyzer and a
simulator. The analyzer reads in one or more desigts contained in a single file and
compiles them into a design library after validgtthe syntax and performing some static
semantic checks. The design library is a pladdénhost environment where compiled
design units are stored.

The simulator simulates an entity, repnése by an entity-architecture pair or by a
configuration, by reading in its compiled descoptifrom the design library & then

performing the following steps:

1. Elaboration
2. Initialization

3. Simulation

VHDL is an acronym for VHSIC Hardware descripti@amguage (VHSIC is an acronym

for very high speed integrated circuits). It isaadware description language that can be

11

YV V V VYV VY

used to model a digital system at many levels sfrabtion, ranging from the algorithmic

level to the gate level.

The complexity of a digital system being modeledldovary from that of simple gate to

a complete digital electronic system, or anythmgpetween.

The digital system can also be described hieraatlizicTiming can also be explicitly

modeled in the same description.

The VHDL language can be regarded as an integratealgamation of the following

languages.

Sequential language.
Concurrent language.
Net list language.

Timing specifications.

Waveform generation language.

Therefore, the language has constructs that enahleto express the concurrent or
sequential behavior of a digital system as an dot@mection of components. All the
above constructs may be combined to provide a celnegmsive description of the system

in a single model.

The language not only defines the syntax but ad$mes very clear simulation semantics
for each language construct. Therefore models ewrith this language can be verified
using a VHDL simulator. It inherits many of its faees especially the sequential part,
from the Ada programming language. Because VHDLvigles an extensive range of
modeling capabilities, it is often difficult to uedstand, fortunately, it is possible to
quickly assimilate a core subset of the languagd th both easy and simple to
understand without learning the more complex femuifhe complete language however
has sufficient power to capture the descriptionthefmost complex chips to a complete

electronic system.

12

1.3 BASIC CONCEPTS OF VERILOG:
1.3.1 LEXICAL CONVENTIONS

The basic lexical conventions used by Verilog HDie aimilar to those in the c
programming language. Verilog contains a streartokéns. Tokens can be comments,
delimiters, numbers, string, identifiers, and keys® Verilog HDL is a case-sensitive

language. All keywords are in low case.
1.3.2 WHITESPACE.:

Blank spaces (\b), tabs () and newlines (\n) casepthe whitespace. Whitespace is

ignored by Verilog except when it separates tokévisitespace is not ignored in strings.
1.3.3 COMMENTS:

Comments can be inserted in the code for readaliitt documentation. There are two
ways to write comments. A one-line comment starth W/”. Verilog skips from that
point to the end of line. A multiple-line commenargs with “/*” and ends with “/*".

Multiple-line comments cannot be nested.

a=Db &% c; // This is a one-line comment

/* This is a multiple line
comment */

/* This is /* an illegal */ comment */

1.3.4 OPERATORS:

Operators are of three type’s unary, binary, amdaty. Unary operators precede the
operand. Binary operators appear between two o@erafernary operators have two

separate operators that separate three operands.

13

~ b; // ~ is a unary operator. b is the operand
b && ¢; // && is a binary operator. b and c are operands
b ?c¢:d; // ?: is a ternary operator. b, ¢ and d are coperands

w
T

1.3.5 NUMBER SPECIFICATION

There are two types of number specification inlegrisized and unsized.
Sized numbers

Sized numbers are represented as <size> ‘<basatermumber>.

<Size> is written only in decimal and specifies thanber of bits in the number. Legal
base formats are decimal (‘d or ‘D), hexadecimlaldt ‘H), binary (‘b or ‘B) and octal
(o or ‘O). the number is specified as consecutivdigits from
0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f. only a subsehese digits is legal for a particular base.

Uppercase letters are legal for number specifinatio

4'p1111 // This is a 4-bit binary number
12'habe // This is a 12-bit hexadecimal number
16'd255 // This is a 16-bit decimal number.

UNSIZED NUMBERS:

Numbers that are specified without a <base formapecification are decimal numbers
by default. Numbers that are written without <sizgecifications have a default number

of bits is simulator — and machine —specific (nmhestt least 32).

23456 // This is a 32-bit decimal number by default
‘he3 // This is a 32-bit hexadecimal number
‘021 // This is a 32-bit octal number

14

X OR Z VALUES:

Verilog has two symbols for unknown and high impemtavalues. These values are very
important for modeling real circuits. An unknownlu@ is denoted by aw. a high

impedance value is denoted hy

12/h13x // Thisis a12-bit hex number;4 least significant bits unknown
6*‘hx //This is a 6-bit hex number
32'bz // This is a 32-bit high impedance number

An x or z values sets four bits for a number in the hexadakbase, three bits for a
number in the octal base, and one bit for a numibethe binary base. If the most
significant bit of a number 8, X, z, the number is automatically extended to fill thest
significant bits, respectively, wit@, x, or z This makes it easy to assigror z to whole

vector. If the most significant digit is 1, thendtalso zero extended.
NEGATIVE NUMBERS :

Negative numbers can be specified by putting a ssign before the size for a constant
number. Size constants are always positive. Itlegal to have a minus sign between

<bhase format > and <number>.

-6'd3 // 8-bit negative number stored as 2’'s complement of 3
4'@-2 // Illegal specification

UNDERSCORE CHARACTERS AND QUESTION MARKS:

An underscore character “_” is allowed anywhera imumber except the first character.

Underscore character are allowed only to improaelability of number and are ignored
by Verilog.

15

A question mark?™ is the Verilog HDL alternative foz in the context of
numbers. The? Is used to enhance readability in tb@se xand case zstatements

behavioral modeling, where the high impedance val@edon’'t acre condition.

12°bl1111_0000_1010 // Use of underline characters for readability
4'p107? // Equivalent of a 4'bllzz

1.3.6 STRINGS:

A string is a sequence of character that is endlbyedouble quotes. The restriction on a
string is that it must be contained on a singlelithat is, without a carriage return. It
cannot be on multiple lines. Strings are treated ssquence of one-byte ASCII values.

"Hello Verileog World" // is a string
“a / b*" [/ is a string

1.3.7 IDENTIFIERS AND KEYWORDS:

Keywords are special identifiers reserved to defime language constructs. Keywords
are in lowercase. Identifiers are names given jeatd so that they can be referenced in
the design. Identifiers are made up of alphanunmararacters, the underscore (_) and
the dollar sign$) and are low case sensitive. Identifier start$ait alphabetic character
or an underscore. They cannot start with a numbafbsign.

reg value; // reg is a keyword; value is an identifier
input clk; // input is a keyword, clk is an identifier

1.3.8 ESCAPED IDENTIFIERS:

Escaped identifiers begin with the backlash (haracter and end with white space (

space, tab, or new line).all characters betweaklash and whitespace are processed

16

literally. Any printable ASCIl character can be luimbed in escaped identifiers. The

backlash or whitespace is not considered a pdheoidentifier.

Zva+b-c
W ¥ rmy_name* *

1.4 DATATYPES:

1.4.1 VALUE SET

Verilog supports four values and eight strengthsntodel the functionality of real
hardware. The four value levels are listed in tdble

Table 1 Value levels

Value Level Condition in Hardware Circuits

Logic zero, false condition
Logic one, true condition
Unknown value

High impedance, floating state

Nox = O

In addition to logic values, strength levels aréenfused to resolve conflicts between
drivers of different strengths in digital circuitdalue level0 and1 can have the strength

levels listed in table 2.

17

Table 2 Strength levels

Strength Level Type Degree
supply Driving strongest
strong Driving ‘
pull Driving
large Storage
weak Driving
medium Storage
small Storage
highz High Impedance weakest

If two signal of unequal strength are driven on ieewthe stronger signal prevails. For
example, if two signals of strength stroh@ndweak Ocontend, the result is resolved as
a drongl. If two signals of equal strengteong 1 andstrong 0 conflict, the result is an

X. Strength levels are particularly useful for accair@iodeling of signal contention, MOS
device, dynamic MOS, and low-level devices. Ontyeg nets can have storage

strengths large, medium, and small.
1.4.2 NETS:

Net represent connection between hardware eleméugs.as in real circuits, nets have
values continuously driven on them by the outptditdevices that they are connected to.
In figure 5 net a is connected to the outpudmd gate gl.net a will continuously assume

the value computed at the out put of gate g1, wisdh& c.

b“}
gl a
C e

Figure 5 Example of nets

18

Nets are declared primarily with the keywarire. Nets are one-bit values by default
unless they are declared explicitly as vectors. Tren wire and net are often used
interchangeable. The default value of a net.isets get output value of their drivers. If a

net has no driver, it gets the value

wire a: // Declare net a for the above circuit

wire b,c; // Declare two wires b,c¢ for the above circuit

wire d = 1'b0; // Net d is fixed to logic value 0 at declaration.

1.4.3 REGISTERS:

Registers represent data storage elements. Registain until another value is placed
onto them. Do not confuse the term registers inildgrwith hardware registers from

edge-triggered flip-flops in real circuits. In Vieg, the term register merely means a
variable that can hold a value. Unlike a net, asteg can be changed anytime in a

simulation by assigning a new value to the register

Register data types are commonly dedlasethe keywordeg. the default value

for areg data type ix.

Example 1

reg reset; // declare a variable reset that can held its value
initial // this construct will be discussed later

begin . .
reset = 1'bl; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1'b0; // after 100 time units reset is deasserted.

end

1.4.4 VECTORS:

Nets orreg data types can be declared as vectors. If bit wgltiot specified, the default

is scalar (1-bit).

19

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; //Vector register,virtual address 4lbitswide

Vectors can be declared at [high#: low #] or [lowsgh #]. But the left number in the
squared brackets is always the most significanbbthe vector. In the example shown

above, bit 1 is the most significant bit of vectdual _addr.

1.4.5 STRINGS:

Strings can be stored neg. the width of the register variables must be laggeugh to
hold the string. Each character in the string taies8 bits (1 byte). If the width of the
register is greater than the size of the stringjldg fills bits to the left of the string with
zeros. If the register width is smaller than thengtwidth, Verilog truncates the leftmost

bits of the string. It is always safe to declasgrang that is slightly wider than necessary.

reg [8*18:1] string_value; //Declare a variable that is18 bytes
wide
initial .
string value = “Hello Verilog World”; // String can be stored
// in wvariable
Special characters serve a special purpose inagigigl strings, such as newline, tabs, and
displaying argument values. Special characterseadisplayed in string only when they

are preceded by escape characters, as shownteblkeS.

20

Table 3 Special characters

Escaped Characters Character Displayed
\n newline
\t tab
%o %o Yo
\\ \
\ “
\ooo Character written in 1-3 octal digits

1.5 SYSTEM TASKS & COMPILER DIRECTIVES:

1.5.1 SYSTEM TASKS:

Verilog provides standard system tasks to do aertaitine operations. All system tasks
appear in the forrB<keyword>. Operations such as displaying on the screen, wramit

values of nets, stopping, and finishing are donsysyem tasks.

Displaying information

$display is the main system task for displaying values afiables or strings or
expressions. This is one of the most useful taskérilog.

Usage$display (p1, p2, p3,..., pn);

P1, p2, p3,...., pn can be quoted strings or varsable expressions. The format of
$display is very similar to print f in “c”. A $lisplay inserts a newline at the end of the
string by default. Strings can be formatted by gdime format specifications listed in
table 4.

21

Table 4 String format specifications

Format Display
%d or %D Display variable in decimal

%b or %B Display variable in binary

%s or %S Display string

%h or %H Display variable in hex
%c or %C Display ASCII character
%om or %M Display hierarchical name (no argument required)

%v or %V Display strength

%0 or %O Display variable in octal

%t or %T Display in current time format

%e or %E Display real number in scientific format (e.g., 3¢10)

%f or %F Display real number in decimal format (e.g., 2.13)

%g or %G Display real number in scientific or decimal, whichever is shorter

Monitoring information:

Verilog provides a mechanism to monitor when itdugachanges. This facility is

provided by theémonitor task.
Usage$monitor (pl, p2, p3.., pn);

The parameters pl, p2... pn can be variables, Isigimaes, or quoted strings. Monitor

continuously monitors the values of the variablesignals specified in the parameter list
and display all parameters in the list whenevervhi@e of any one variable or signal

changes. Unlikedisplay, $monitor needs to be invoked only once. Only one monitoring
list can be active at a time. If there is more tlmre $monitor statement in your

simulation, the lastmonitor statement will be the active statement.
Two tasks are used to switch monitoring on and off.
Usage$monitor on;

$monitor off;

The $monitor on task enables monitoring and tHemonitor off tasks disables

monitoring during a simulation. An example of monistatement is given below.

22

Example 1 monitor statement

//Monitor time and value of the signals clock and reset . .
//Clock toggles every 5 time units and reset goes down at 10 time units
initial
begin
Smonitor($time,
v value of signals clock = %b reset = %b”, clock, reset);

end

Partial output of the monitor statement:

-- 0 value of signals clock 0 reset =1
-- 5 Value of signals clock 1 reset

-— 10 Value of signals clock = 0 reset = 0

Ik
=

Stopping & finishing simulation:
The task$ stopis provided to stop during a simulation.
Usage$ stop

The $ stoptask puts the simulation in an interactive modéle designer can then debug
the design from the interactive mode. Wstoptask is used whenever the designer wants

to suspend the simulation and examine the valusgpéls in the design.
The$finish task terminates the simulation.
Usage$finish;
Examples of $top and$ finish are shown below in example 2.
// Stop at time 100 in the simulation and examine the results

// Finish the simulation at time.
initial // to be explained later. time = 0

begin
clock = 0;
reset = 1;

#100 Sstop; // This will suspend the simulation at time = 100
#900 $finish; // This will terminate the simulation at time = 1000
end

Example 2 Stop and finish tasks

23

1.5.2 COMPILER DIRECTIVES:

Complier directives are provided in Veriog. All cpiter directives are defined by using
the "<keyword> construct. We deal with two most useful compileectives.

+ ‘define:

The "define directive is used to define text macros in Veril®gis is similar ta# define
construct in “C”. The defined constants or text macare used in the Verilog code by
preceding them with a (back tick). The Verilog compiler substitutes the text of the

macro whenever it encounters<anacro_name>

Example 3 * Define directive

//define a text macro that defines default word size
//Used as ‘WORD_SIZE in the code
‘define WORD_SIZE 32

//define an alias. A Sstop will be substituted wherever 'S appears
‘define S Sstop;

//define a freguently used text string
‘define WORD_REG reg [31:0]
// you can then define a 32-bit register as ‘WORD_REG reg32;

* include:

The " include directive allows you to include entire contentsao¥erilog source file in
another Verilog file during compilation. This worksnilarly to the#include in the “C”
programming language. This directive is typicallsed to include header files, which
typically contain global or commonly used definitso

Example 4 " include directive

// Include the file header.v, which contains declarations in the

// main verilog file design.v.
‘include header.v

:Verﬂog code in file design.v>

24

1.5.3 MODULES:

A module in Verilog consists of distinct parts,sd®wn in figure 6.

Module Name,
Port List, Port Declarations (if ports present)
Parameters(optional),

Declarations of wires, Data flow statements
regs and other variables (assign)
Instantiation of lower always and initial blocks.
level modules All behavioral statements
go in these blocks.

Tasks and functions

endmodule statement

Figure 6 components of Verilog module

A module definition always begins with the keywarsbdule. The module name, port
list, port declarations, and optional parameterstnmome first in a module definition.
Port list and port declarations are present arsgmteonly if the module has any ports to
interact with the external environment. The fivenpomnents within a module are —
variable declarations, dataflow statements, ingtaoh of lower modules, behavioral
blocks, and tasks or functions. These componemsean any order and at any place in
the module definition. Thend module statement must always come last in the module
definition .All components excepbhodule, modulename, andend moduleare optional
and can be mixed and matched as per design needkgvallows multiple modules to

be defined in a single file. The modules can bénéefin any order in the file.

25

1.5.4 PORTS:

Ports provide the interface by which a module cammunicates with its environment.
For example, the input/output pins of an IC chip @s ports. The environment can
interact with the nodule only through its portse.thternals of the module are not visible
to the environment. This provides a very powerfekibility to the designer. Ports are

also referred as “terminals”.

1.5.5 PORT DECLARATION:

All ports in the list of ports must be declaredtire module. ports can be declared as

follows:

Verilog Keyword Type of Port

input Input port
output Output port
inout Bidirectional port

Each port in the lit is defined asput, output, or in out, based on the direction of the

port signal. Thus, for the example of 4-bit fullded.

Figure 7 full adder (4-bit)

Top

a— full

adder
b —®| (4 bit)

fulladd4 —w c_out

e S11M

C_In —p»

26

Example 5 port declarations
module fulladdd4 (sum, c_out, a, b, c_in};

//Begin port declarations section
cutput [(3:0] sum;
output c_cout;

input [3:0] a, b;
input c_in;
//End port declarations section

e

<module internals>

endmodule

Note that all ports declarations are implicitly Beed aswire in verilog. Thus, if a port is
intended to be avire, it is sufficient to declare it agutput, input, or in out. Input or
outputs are normally declared asres. However, ifoutput ports hold their value they

must be declared asg.

1.5.6 PORT CONNECTION RULES:

One can visualize a port as consisting of two yoit® unit that is internal to the module
another that is external to the module. The inteamal external units are connected.
There are rules governing port connections whenubesdare initiated within other

modules. The Verilog simulator complains if any tpoonnection rules are violated.

These rules are summarized in figure 8.

* Inputs

Internally, input ports must always be of the typ. Externally, the inputs can be

connected to a variable which isey or anet.

27

Figure 8 port connection rules

net

net inout

input output
— —
reg or net net reg or net net

e Outputs:

Internally, outputs port can be of the tyjeg or net. Externally, outputs must always

be connected tomet. They cannot be connected toeq.
* Inouts:

Internally, inout ports must always be of the typet. Externally, inout ports must

always be connected tanat.
* Width watching:

It is legal to connect internal and external iteshslifferent sizes when making inter-
module port connections. However, a warning isdglby issued that the widths do

not match.
* Unconnected ports:

Verilog allows ports to remain unconnected. Fomegi, certain outputs ports might
be simply for debugging and you might not be ird&¥d in connecting them to the
external signals. You can let a port remain uncotateby instantiating module as

shown below.

fulladd4 falO(suM, , A, B, C_IN); // Output port c_out is unconnected

28

1.5.7 CONNECTING PORTS TO EXTERNAL SIGNALS:

There are two methods of making connections betveggmals specified in the module
instantiation and the ports in a module definitidhese two methods cannot be mixed.

These methods are discussed in the following sextio

» Connecting by ordered list:

Connecting by ordered list is the most intuitivetinoel for most beginners. The
signals to be connected must appear in the modstarnitiation in the same order as
the ports in the port list in the module definitid@nce again, consider the module
fulladd4 defined in Example 5. To connect signalsniodule Top by ordered list, the
Verilog code is shown in Example 6. Notice that ¢éxéernal signals SUM, C_OUT,

A, B, and C_IN appear in exactly the same ordethasports sum, c_out, a, b, and
c_in in module definition of fulladd4.

Example 6 Connection by order list
module Top;

//Declare connection wvariables
reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

//Instantiate fulladd4, call it fa_ordered. .
//8ignals are connected to ports in order (by position)
fulladdd fa_ordered(SUM, C_OUT, A, B, C_IN};

<stimalus>

29

endmodule

module fulladdd (sum, c_out, a, b, c_in);:
output[3i: 0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

«module internals>

endmodule

» Connecting ports by name:

For large designs where modules have, say, 50, perteembering the order of the ports
in the module definition is impractical and errappe. Verilog provides the capability to
connect external signals to ports by the port namaker than by position. We could
connect the ports by name in Example 6 above antiating the module fulladd4, as
follows. Note that you can specify the port conime in any order as long as the port

name in the module definition correctly matchesdkirnal signal.

S Instantiate module fa_byname and connect signals to ports by name

fulladd4 fa_byname!.c_out(C_OUT), .sum(SUM}, .bB(B), .c_in{C_IMN),

LAalA),)
Note that only those ports that are to be conndctedternal signals must be specified in
port connection by name. Unconnected ports canrbppeéd. For example, if the port
c_out were to be kept unconnected, the instantiadiofulladd4 would look as follows.

The port c_out is simply dropped from the port list

// Instantiate module fa_byname and connect signals te ports by name
fulladd4 fa_byname(.sum(SUM}, .bL(B), .c_in{C_IN}, .ald),):

Another advantage of connecting ports by nameas as long as the port name is not
changed, the order of ports in the port list of adole can be rearranged without

changing the port connections in module instarmwnesti

30

MODELING CONCEPTS

GATE-LEVEL MODELING:
2.1 Gate Types:

A logic circuit can be designed by use of logicegatVerilog supports basic logic gates
as predefined primitives. These primitives areansated like modules except that they
are predefined in Verilog and do not need a model@ition. All logic circuits can be

designed by using basic gates. There are two dlasisbasic gates: and/or gates and

buf/not gates.

2.1.1 And/Or Gates:

And/or gates have one scalar output and multipddasdnputs. The first terminal in the
list of gate terminals is an output and the otkeeminals are inputs. The output of a gate
is evaluated as soon as one of the inputs chaigesand/or gates available in Verilog

are shown below.

and or Xor
nand nor xnor

The corresponding logic symbols for these gatessaown in Figure 9. We consider
gates with two inputs. The output terminal is deddby out. Input terminals are denoted
by il and i2.

These gates are instantiated to build logic ciscuit Verilog. Examples of gate
instantiations are shown below. In Example , fonradtances, OUT is connected to the
output out, and IN1 and IN2 are connected to the imputs il and i2 of the gate

primitives.

31

Figure 9 Basic gates

i1 —

out

i —

; out
i2
. out
i2

xor

out

nand

i1
out

&5

nor

i1 i
i2 u

xnor

More than two inputs can be specified in a gateamtgation. Gates with more than two

inputs are instantiated by simply adding more inpoitts in the gate instantiation (see

Example 7). Verilog automatically instantiates éppropriate gate.

Example 7 Gate instantiation of and/or gate

wire OUT, IN1, INZ;

// basic gate instantiations.
and al{oUT, IN1, INZ};

nand nal {OUT, INl, INZ);:

or orliouT, INl, INZ);

nor norl (OUT, IN1, INZ);

xor x1{0OUT, IN1l, INZ);

¥nor nxl (OUT, INL, INZ);

// More than two inputs; 3 input nand gate
nand nal_3inp (OUT, IN1, INZ, IN3);

// gate instantiation without instance name

and (OUT, IN1l, IN2); // legal gate instantiation

32

The truth tables for these gates define how outfuutshe gates are computed from the
inputs. Truth tables are defined assuming two plhe truth tables for these gates are
shown in Table5. Outputs of gates with more thao itmputs are computed by applying

the truth table iteratively.

Table 5 Truth Table For and/Or gates
il il
and | i ¥ z nand| 1 % z
oo o 0 0 0|1 1 1 1
0 1 X 0 X X
2 ! p 11
x |0 x x X x |1 X X X
z 1] X X x E 1 - % %
il il
or G 'I X =z nor U 1 x =
] 1 X X a1 0 % X
1 1 1]
2 1 1 0 1 o 0
x [x 1 X X = x 0 x X
Z|lx 1 X X zZ|lx 0 x X
il ! il
er | | X Z #mer| o 1] x %
0|0 1 X X 011 i
o 1 1 0 x x 0 n 1 XX
X | X X X X x X X x X
4 X X X X Z X X X X

2.1.2 Buf/Not Gates:

Buf/not gates have one scalar input and one or meaar outputs. The last terminal in
the port list is connected to the input. Other feals are connected to the outputs. We

will discuss gates that have one input and oneubutp

Two basic buf/not gate primitives are provided ierNog.

33

The symbols for these logic gates are shown inreid0.

Figure 10 Buf and Not Gates
in ™~ out in _Do_mlt
buf not

These gates are instantiated in Verilog as showanipke 8. That these gates can have

multiple outputs but exactly one input, which thastlterminal in the port list is.

Example 8 Gate Instant ionf@G\nd/ Or gates

// basic gate instantiations.
buf Bl{QUT1, IN);
not nl{ourl, IN);

// More than two oubputs
buf bl_Zcout (OUT1, OUT2, IN);

/{ gate instantiation without instance name
not (OUTL, IN}: // legal gate instcantiation

The truth tables for these gates are very simpiathTtables for gates with one input and

one output are shown in Table 6.

Table 6 Truth Tabldsr Buf /Not gates
buf in out not in out
0 0 0 1
| | 1 0
X X X X
£ X Z X

2.1.3 Gate Level Modeling Examples:

4:1 Multiplexer:

34

We will design a 4-to-1 multiplexer with 2 seledgrsals. Multiplexers serve a useful

purpose in logic design. They can connect two orensources to a single destination.

They can also be used to implement Boolean funstidfe will assume for this example
that signals s1 and sO do not get the valeez. The I/O diagram and the truth table for
the multiplexer are shown in Figure 11. The I/Ogdéan will be useful in setting up the
port list for the multiplexer.

Figure 11 4 to 1 multiplexer

0 —

il — sl s out
dto-l1 | g out

i2 —p Mux 0 10

i3 —- 0 1 n

\?—ff 1 0 2

i 1 1 13
51 s0

We will implement the logic for the multiplexer ugi basic logic gates. The logic

diagram for the multiplexer is shown in Figurel2.

Figure 12 Logic Diagram for Multiplexer

i
1
|
|
|
s1n s0n :
I
I
|
|
|
I
|

35

Two intermediate nets, sOn and s1n, are createy;afe complements of input signals sl
and s0. Internal nets yO0, y1, y2, y3 are also requiNote that instance names are not

specified for primitive gatesot , and, andor .

Example 9 Verilog description of multiplexe

Jf HModule 4-to-1 multiplexer. Port list i= taken exactly from
ff the I/0 diagram.
module mux4 to 1 (owt, i0, i1, 12, i3, =1, =0):

/f Port declarations from the I/0 diagram
output out;

input i0, il, i2, i3;

input =1, =0;

J// Internal wire declarations
wire =ln, =0n;
wire yv0, vl1, v2, ¥3;

// Gate instantiations

ff Create =ln and =s0n =signals.
not (=lm, =1);
not (30n, =0);

ff 3-input and gates instantiated
and (yv0, i0, =ln, =0n):;

and (vl, il, =ln, =0):

and (vZ2, i2, =1, =0mn):

and (v3, 13, =1, =0);

S 4—-input or gate instantiated
or (out, v0, ¥1, ¥v2, ¥3):

endmodule

This multiplexer can be tested with the stimulusveh in Example10. The stimulus
checks that each combination of select signals exdsnthe appropriate input to the
output. The signal OUTPUT is displayed one timet @fier it changes. System task

$monitor could also be used to display the signals whey ¢hange values.

36

Example 10 Stimulus for multiplexe

J// Define the stimulus module (no ports)
module stimalus;

// Declare wvariables to be connected
fFf to inputs

reg INO, IN1, IN2, IN3:

reqg 31, 50;

S Declare output wire
wire CUIPUI;

S/ Instantiate the multiplexer
max4 to 1 mymux (OUTPUT, INO, IN1, IN2, IN3, 51, 30);

S Stimmlate the inputs
fSf Define the stimmlus module (no ports)
initial
begin
S set input lines
INO = 1; IN1 = 0; INZ = 1; IN2 = 0;
#1 Sdisplay("INO= %b, IN1= %b, IN2= %b, IN3= %b\n", INO,IN1, IN2,IN3):

/f choose INO
51 = 0; 50 = 0;
#1 &display("51 = %b, S0 = %b, OUTEUT

b \n", 51, 50, OUTPUT):

J{ choose IN1
51 = 0y 50 = 1;
#1 Sdisplay("S51 = %b, SO = %b, OUTEUT

b \n", 51, 50, OUTPUT):

Jf choose IN2
51 = 1; 50 = 0;
#1 Sdisplay("51 = %b, S0 = %b, OUTEUT

b \n", 51, 50, OUTPUT):

/f choose IN3

51 =1; 50 = 1;

#1 f£display("51 = %b, 50 = %b, OUTEUT
end

tb \n", 51, 50, OUTPEUT):

endmodule
The output of the simulation is shown below.

INO= 1, IN1= 0, IN2= 1, IN3= 0

51 =0, 50 = 0, OUTPUT = 1
51 =0, 50 = 1, OUTPUT = 0
51 =1, 50 = 0, OUTPUT = 1
51 =1, 50 = 1, OUTPUT = 0

37

2.1.4 Gate Delays:

In real circuits, logic gates have delays assodiatéh them. Gate delays allow the
Verilog user to specify delays through the logiccuits. Pin-to-pin delays can also be
specified in Verilog.

Rise, fall, and Turn-off Delays:
There are three types of delays from the inputBeémutput of a primitive gate.
Rise Delay

The rise delay is associated with a gate outpuositian to ai from another value.

0, xoOores

t_rise

Fall Delay

The fall delay is associated with a gate outputditson to 0 from another value.

l, x0orz

<>| .
t_fall
Turn-Off Delay

The turn-off delay is associated with a gate outpartsition to the high impedance value
(z) from another value.

If the value changes to the minimum of the three delays is considerededhypes of
delay specifications are allowed. If only one dekgpecified, this value is used for all

transitions. If two delays are specified, they rdfethe rise and fall delay values. The

38

turn-off delay is the minimum of the two delays.alf three delays are specified, they
refer to rise, fall, and turn-off delay valuesntl delays are specified, the default value is

zero.
2.1.5 Min/Typ/Max Values:

Verilog provides an additional level of control feach type of delay mentioned above.
For each type of delay—rise, fall, and turn-off—et@rvalues, min, typ, and max, can be
specified. Any one value can be chosen at the stdhe simulation. Min/typ/max values
are used to model devices whose delays vary wahminimum and maximum range

because of the IC fabrication process variations.

Min value

The min value is the minimum delay value that tesigher expects the gate to have.
Typ value

The typ value is the typical delay value that tesigner expects the gate to have.
Max value

The max value is the maximum delay value that #sgher expects the gate to have.

2.1.6 DELAY EXAMPLE:

Let us consider a simple example to illustrateubke of gate delays to model timing in
the logic circuits. A simple module called D implents the following logic equations:

Out = (a-bg +

The gate-level implementation is shown in ModuléAgure 13). The module contains

two gates with delays of 5 and 4 time units.

The module D is defined in Verilog as shown in Epserll.

39

Figure 13 module D

D

————————————— 1

| |
a —— I

| | #5 — |
b T |

I #4 out
C : I

- J

Example 11 Verilog Daftion for Module D Delay

{ Define a simple combination module called D
module D {out, a, b, c)-r

f 170 port declarations
output out;

input a,b,c;

"/ Internal nets

wire e;

/ Instantiate primitive gates to build the circuit
and #(5) al(e, a, b); //Delay of 5 on gate al
or #(4) ol{out, e,c):; f/Delay of 4 on gate ol
endmodule

The waveforms from the simulation are shown in Fegi4 to illustrate the effect of
specifying delays on gates. The waveforms are rawnl to scale. However, simulation

time at each transition is specified below thegitaon.
* The outputs E and OUT are initially unknown.

» Attime 10, after A, B, and C all transition 1o OUT transitions ta after a delay

of 4 time units and E changes value tafter 5 time units.

» Attime 20, B and C transition to. E changes value t after 5 time units and

OUT transitions t®, 4 time units after E changes.

40

Figure 14 Waveforms for Delay Simulain

| 1 | I |
. 7 | | |
| | | I |
. I | | |
| |1 | | |
c I | | |
s 1] I I |
E XXX —— " '
| | | I
OUT XXXXXXX| ——» | | M
| | 1 | 1 |
Time 0 5 9 10 14 15 20 25 29

2.2 DATAFLOW MODELING:

2.2.1 Continuous Assignment:

A continuous assignment is the most basic statematdtaflow modeling, used to drive
a value onto a net. This assignment replaces gatdse description of the circuit and
describes the circuit at a higher level of abstoactThe assignment statement starts with

the keywordassi gn. The syntax of aassi gn statement is as follows.

continuous assign ::= assign [drive strength] [delay3]

liszt of net assignments ;
list of net assignments ::!= net assignment { , net assignment }
net assignment ::= net lvalue = expression

2.2.2 Implicit Continuous Assignment:

Instead of declaring a net and then writing a ecatus assignment on the net, Verilog
provides a shortcut by which a continuous assigriroan be placed on a net when it is
declared. There can be only one implicit declaraissignment per net because a net is

declared only once.

In the example below, an implicit continuous assignt is contrasted with a regular

continuous assignment.

41

f/Regular continuous assignment
wire out:;
as=sign out = inl & inZ;

//B8ame effect is achieved by an implicit continuous assignment
Wwire out = inl & in2;

2.2.3 Implicit Net Declaration:

If a signal name is used to the left of the cordumi assignment, an implicit net
declaration will be inferred for that signal nanfethe net is connected to a module port,

the width of the inferred net is equal to the widflthe module port.
f Continuous assign. cub is a net.
wire il, i2:
assign out = il & i2; //Hote that out was not declared as a wire

Sfbut an implicit wire declaration for out
ffis done by the simulator

2.2.4 Expressions, Operators & Operands:

Dataflow modeling describes the design in termsexgressions instead of primitive

gates. Expressions, operators, and operands fartmaitis of dataflow modeling.
Expressions:

Expressions are constructs that combine operatar®perands to produce a result.

f Examples of expression=s. Combines operands and operators

a”™b
addri[20:17] + addr2[20:17]
inl inZ

Operands:

Operands can be any one of the data types. Sons¢rects will take only certain types
of operands. Operands can be constants, integatsyumbers, nets, registers, times, bit-
select (one bit of vector net or a vector registeayt-select (selected bits of the vector net

or register vector), and memories or function calls

42

integer count, final count;
final count = count + 1;//count i= an integer operand

real a, b, c:
c=a-b; /fa and b are real operands

reg [15:0] regl, reg:
reg [3:0] reg_out;
reg out = regl[3:0] ~ reg2[3:0]://reqgl[3:0] and reg2[3:0] are
S fpart-select register operands

reg ret_wvalue;
ret_walue = calculate parity (4, Ej;fﬁcalculate_parity iz a
S/function type operand

Operators:

Operators act on the operands to produce desisedtseVerilog provides various types

of operators.

dl && d2 // && i= an operator on operands dl and 42
la[o] /f ' is an operator on operand a[0]
B »» 1 // »» iz an operator on operands B and 1

2.2.5 Operator Types:

Verilog provides many different operator types. fap@rs can be arithmetic, logical,
relational, equality, bitwise, reduction, shift,noatenation, or conditional. Some of these
operators are similar to the operators used irCtippogramming language. Each operator
type is denoted by a symbol. Table 7 shows the t&mpisting of operator symbols

classified by category.

43

Table 7 Operator Types and Symbols
Operator Operator Operation Number of
Type Symbol Performed Operands
Arithmetic * multiply bwo
/! divide two
+ add two
- subtract two
% modulus two
Logical 1 logical negation one
k& logical and two
| logical or two
| Relational > greater than two
< less than two
»= greater than or equal two
<= less than or equal two
Equality == equality two
= inequality two
== case equality two
l== case inequality two
Bitwise ~ bitwise negation one
& bitwise and two
bitwise or two
4 bitwise xor twio
Am or ~" bitwise xnor two
Reduction & reduction and one
g reduction nand one
| recduction or one
~| reduction nor one
A reduction xor one
Am Or = reduction xnor one
Shift > Right shift two
< Left shift two
Concatenation {3 Concatenation any number
Replication { {1} } Replication any number |
Conditional 71 Conditional three |

Concatenation Operator:

The concatenation operator ({,}) provides a mect@anio append multiple operands. The

operands must be sized. Unsized operands are lostedl because the size of each

operand must be known for computation of the sfaberesult.

44

Concatenations are expressed as operands withoeravith commas separating the
operands. Operands can be scalar nets or regise®r nets or registers, bit-select,

part-select, or sized constants.
// X = 4'bl010

&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0
¥//Eguivalent to 1 0 1 0. Results in 1'bl
~¥//Equivalent to 1 ~ 0 ~ 1 =~ 0. Results in 1'b0

/ /B reduction =or or xnor can be used for even or odd parity
//generation of a wvector.

Replication Operator:

Repetitive concatenation of the same number caexpeessed by using a replication
constant. A replication constant specifies how miames to replicate the number inside
the brackets ({}).

reg A;

reg [1:0] B, C;

reg [2:0] D;

A=1'bl; B = 2'b00; T = 2'b10; D = 3'b110;

Y = { 4{A} } // Result Y is 4'blill1l

Y { 4{A} , 2{B} } // Result Y is 8'b11110000

Y = { 4{A} , 2{B} , C } // Result Y is 8'b1111000010

Conditional Operator:
The conditional operator() takes three operands.
Usage: condition_expr ? true_expr : false_expr ;

The condition expression (condition_expr) is fiesaluated. If the result is true (logical
1), then the true_expr is evaluated. If the resufalse (logicab), then the false_expr is
evaluated. If the result is(ambiguous), then both true_expr and false_expeaaluated
and their results are compared, bit by bit, torrefar each bit position anif the bits are

different and the value of the bits if they are saene.

The action of a conditional operator is similaraanultiplexer. Alternately, it can be

compared to the if-else expression.

45

false_expr —p={ 0

2-to-1
multiplexer | pm out
true_expr —p=| |

cond_expr

Conditional operators are frequently used in datafimodeling to model conditional

assignments. The conditional expression acts asteheng control.

//model functionality of a tristate buffer
assign addr bus = drive enable ? addr out : 36'bz;

//model functionality of a 2-to-1 mux
assign out = control ? inl : in0;

2.3 Behavioral Modeling:

2.3.1 Structured Procedures:

There are two structured procedure statements mogeal ways andinitial . These
statements are the two most basic statements awvlwehl modeling. All other behavioral

statements can appear only inside these strucfuoegdure statements.
Initial Statement:

All statements inside anhniti al statement constitute amitial block. Aniniti al
block starts at time 0, executes exactly once duensimulation, and then does not
execute again. If there are multiplei tial blocks, each block starts to execute
concurrently at time 0. Each block finishes exemutindependently of other blocks.
Multiple behavioral statements must be groupedcally using the keywordsegi n and

end. If there is only one behavioral statement, grogps not necessary. This is similar

46

to the begin-end blocks in Pascal programming lagguor the { } grouping in the C

programming language. Example 12 illustrates #eeaf the ni ti al statement.

Example 12 Initial Statement
module stimulus;

reqg X,¥, arb, m;

initial
m = 1'b0; //single statement; does not need to be grouped

initial

begin
#5 a = 1'bl; //multiple statements; need to be grouped
#25 b 1'b0;

end

initial
begin
#10 = = 1'b0;
#25 y = 1'bl;
end

initial
#50 Sfinish;

endmodule
In the above example, the three initial statemstad to execute in parallel at time 0. If
delay #<delay> is seen before a statement, thenséait is executed <delay> time units

after the current simulation time. Thus, the execusequence of the statements inside

theini ti al blocks will be as follows.

time statement executed
] m = 1'b0;
5 a = 1'bl;
10 x = 1'b0;
30 b = 1"b0;
35 vy = 1'b1;
50 $finish;

Theinitial blocks are typically used for initialization, maoring, waveforms and

other processes that must be executed only onaegdiie entire simulation run.

47

Always Statement:

All behavioral statements inside anways Statement constitute amways block. The

al ways Statement starts at time 0 and executes the statenmin theal ways block
continuously in a looping fashion. This statemenised to model a block of activity that
is repeated continuously in a digital circuit. Axaeple is a clock generator module that
toggles the clock signal every half cycle. In remtuits, the clock generator is active
from time O to as long as the circuit is poweredBxample 13 illustrates one method to
model a clock generator in Verilog.

Example 13 Always Statement

module clock gen (cutput reg clock):;

//Initialize clock at time zero

initial
clock = 1'b0;
//Toggle clock every half-cycle (time period = 20)
always
#10 clock = ~clock;
initial

#1000 Sfinish;
endmodule
In Example 13, thal ways statement starts at time 0 and executes the statesiock =
~clock every 10 time units. Notice that the inizaliion of clock has to be done inside a
separateniti al statement. If we put the initialization of cloatside theal ways block,
clock will be initialized every time thel ways is entered. Also, the simulation must be

halted inside anni ti al statement. If there is r&st op or $fi ni sh statement to halt the

simulation, the clock generator will run forever.

2.3.2 Procedural Assignments

Procedural assignments update valueseaf, i nt eger, real, orti me variables. The
value placed on a variable will remain unchangetll @mother procedural assignment

updates the variable with a different value. Thetay is shown below.

48

assignment ::= wvariable lvalue = [delay or event control]
expression

There are two types of procedural assignment s&ttsmblocking and nonblocking.
Blocking Assignment:

Blocking assignment statements are executed inotider they are specified in a
sequential block. A blocking assignment will nobdk execution of statements that
follow in a parallel block.

The= operator is used to specify blocking assignments.
Nonblocking Assignment:

Nonblocking assignments allow scheduling of assigmisiwithout blocking execution of
the statements that follow in a sequential block<-A operator is used to specify
nonblocking assignments. Note that this operatar tha same symbol as a relational
operator, less_than_equal_to. The operatas interpreted as a relational operator in an

expression and as an assignment operator in thextaf a nonblocking assignment.

2.3.3 Multiway Branching:
Case Statement:

The keywordsase, endcase, anddef aul t are used in the case statement..

case (expression)
alternativel: statementl;
alternativeZ: statementz;
alternativeld: statement3;

default: defzult statement;
endcase

Each of statementl, statement2 ..., default_stateo@enbe a single statement or a block
of multiple statements. A block of multiple statertee must be grouped by keywords

begi n andend.

49

Case x , Case z Keywords:

There are two variations of thase statement. They are denoted by keywordsex

andcasez.

% Casez treats allz values in the case alternatives or the case esipregas don't

cares. All bit positions with can also represented byn that position.

+ Casex treats allx andz values in the case item or the case expressiaiomrs

cares.

The use otasex andcasez allows comparison of only non-or =z positions in the case

expression and the case alternatives.

2.3.4 Loops:

There are four types of looping statements in \dgriwhile, for, repeat, and forever. The
syntax of these loops is very similar to the syntdxloops in the C programming
language. All looping statements can appear orgidenani nitial or al ways block.

Loops may contain delay expressions.
While Loop:

The keywordahi | e is used to specify this loop. Thei | e loop executes until the while-
expression is not true. If the loop is entered wtienwhile-expression is not true, the

loop is not executed at all.

For Loop:

The keyword or is used to specify this loop. Ther loop contains three parts:
% An initial condition
% A check to see if the terminating condition is true
% A procedural assignment to change value of therobwariable

The initialization condition and the incrementingp@edural assignment are included in
thefor loop and do not need to be specified separatdiys,Tthef or loop provides a

more compact loop structure than ime! e loop.

50

Repeat Loop:

The keywordr epeat is used for this loop. Theepeat construct executes the loop a
fixed number of times. Aepeat construct cannot be used to loop on a generatdbgi
expression. Awhi | e loop is used for that purpose.r&peat construct must contain a
number, which can be a constant, a variable ograkvalue. However, if the number is
a variable or signal value, it is evaluated onlyewlthe loop starts and not during the loop

execution.
Forever Loop:

The keywordforever is used to express this loop. The loop does notato any
expression and executes forever until #ieni sh task is encountered. The loop is
equivalent to awi | e loop with an expression that always evaluatesue, te.g., while

(). A forever loop can be exited by use of éheabl e statement.

Aforever loop is typically used in conjunction with timirgpntrol constructs. If
timing control constructs are not used, the Vergogulator would execute this statement
infinitely without advancing simulation time andethest of the design would never be

executed.

51

8 Bit ALU

Arithmetic Logic Unit performs the arithmetic analgic operations during execution of

an instruction. Contains accumulator CPU regiséers related logic such as arithmetic
and logic unit. ALU communicates with the internedjisters and the external data bus by
using internal data bus. Functions performed byAhd include:

+« Addition

% Subtraction

+ Logical AND

% Logical OR

+« Logical Exclusive OR

s Compare
+« Left or Right Shifts or Rotate
% Increment

< Decrement
++» Set/Reset and Test Bit

3.10verview:
The arithmetic logic unit (ALU) is the brain of tkemputer, the device that performs the
arithmetic operations like addition, subtractioriagical operations like AND &OR.

ALL operation

) —————> Zero

—— Reazult
b - ———— Overflow

CarryOut

Figure 15 ALU Symbol

52

For this project | need to design 8-bit ALU to merh 16 operations:

ADD, SUB, Increment, Decrement, AND, CLEAR, NOT, fradiate OR, MOV, MOV
Word, Rotate Left, Rotate Right, SWAP, EX-OR, B&SF. The ALU should have two
8-bit inputs s1 and s2, 4-bit ALU operation, outgtibuld be 8-bit result, 1-bit Zero

signal, 1-bit Carry Out and 1-bit overflow outputen an overflow is detected.

3.2Project Requirements:

Design 8-bit ALU that has inputs sl [7:0], s2 [7:6] ALU operation [3:0] and outputs
Zero, Result [7:0], Overflow, Carry Out. The ALUalid perform the above sixteen (16)

operations.

3.3 Design Description:

3.3.1 1-bit ALU for the MSB:

For the most significant bit (MSB) of my ALU | dgsied a special 1- bit ALU, which

has overflow detection logic and a special outpit S

alulbitmsb

50 F— 5o
51 F—{s1 RESULT—* RESULT
A A SETI—X SET
B B OVERFLOW— OVERFLOW

EIHNVERT }':_ EIHNHVERT GHHH‘I"DUT_}‘: CARRYOUT

LESS A —|LESS

CARRY I H }':._ CARRYIH

Figure 16 1-bit ALU for the Most Significant Bit (MSB)

3.3.2 Overflow Detection:

The overflow can be found when we compare the Qarmapd the CarryOut signal. If
they have different values, than overflow occursiath of them are Os or 1s there is no

overflow. This logic can easily be represented I3RXon the two signals.

53

adder

A Sut

7: E CARRYOUT

CARRY I M

Carryln

e uerllow

CarryOut

Table 8 Truth Table for XOR

A B Axor B
0 0 0
0 1 1
1 0 1
1 1 0

3.3.3 Set Output:

This 1-bit ALU differs from the regular one not grily the overflow detection. It has an
extra output called Set used for the SLT operati®t.is the Sum output of the adder and
is connected to the Less input of the first 1-Hil A

3.4Regular 1-bit ALU:

My regular 1-bit ALU consists of 1-bit full addexpmponents for logical operations and
operation selector. This 1-bit ALU is used for fhst 7 bits [6.0] of the 8-bit ALU.

54

—so
—51

— A RESULTI—
— B CARRYOUT—

—{BEINYERT
—{LESS

—ICARRTIHN

Figure 17 1-bit ALU

3.5Full Adder:
It can perform the following operations: AND, ORId#ion of a & b. The adder has 3

Inputs - a, b, Carryln; and 2 outputs - Sum andyCaut and is also called (3,2). Adder
with 2 inputs and 2 outputs is called half adder.

Figure 18 1-bit Full Adder

55

Inputs Outputs Comments

a b CarryIn | CarryOut Sum

0 0 0 0 0 0+0+0=004,
0 0 1 0 1 0+0+1=01 o
0 1 0 0 1 0+1+0=01 two
0 1 1 1 0 0+1+1=10 4,
1 0 0 0 1 1+0+0=01 w0
1 0 1 1 0 1+0+1=10 two
1 1 0 1 0 1+1+0=10 4,
1 1 1 1 1 1+1+1=11 o

Table 9 Input & Output Specification of 1-bit Full Adder

3.6 Controls Of 1-bit ALU:

Selecting the ALU operation to be performed is iempénted with 4x1 multiplexer.

2Tmus
o igur n
oo L it 5 .
___________ L —o—wr -

51

21rnux
e o T
= o C—— s . .
........... L —owe =

Figure 19

4x1 Multiplexer

56

The 4x1 multiplexer is delivered with the logictbfee 2x1 multiplexers as is shown on
Fig. 20. The data inputs are A, B, C and D cons@nals are SO and S1; output result is
E. The truth table on table 10 describes the lodigactionality of 4x1 multiplexer. The
code combination of the control signals SO, S1 ddterminate which one of the data
signals A, B, C or D will appear at the output Br Example with combination SO0=0 and
S1=0 the output signal E is A.

Table 10 Truth Table for 4x1 Multiplexer

Control signals Result

S1 S0 E

0 0 A

0 1 B

1 0 C

1 1 D
e ¥ — 0 A
1_ ..S.’?".':'.'-..T.'.F'.'-..E."F =R ! b

Figure 20 2x1 Multiplexer & Truth Table

3.7 Zero Detector:

It is needed to check if two registers are equalair We could say that they are equal if
a—-b=0.

57

Fesul[0]
Fesult[1] : :
Result[2] :
Result[3] : :
Resullg]) 0- Fo— > Zero
Result[S] : :
Fesult[B]
Fesult[7]

Figure 21 Zero Detectors

The expression for the Zero signal is:

Zero = (Result7 + Resulto + ... + Result0)

58

Hard Ware Kit (Spartan -3A)

Description:

The Spartan-3A Evaluation Kit pes a platform for engineers designing
with the Xilinx Spartan-3A FPGA and/or Cypress P8oB®lixed Signal Array. The
board provides the necessary hardware to not ordjuate the advanced features of
these devices but also to implement user agpmics using peripherals and
expansion connectors on the Spartan-3A evaludipard. Figure 1 is a picture of the
Spartan-3A evaluation board; the block diagramigufe 2 provides a high-level view of

the components and interconnects.

Features
Xilinx 3S400A-4FTG256C FPGA

» Clocks

% 16 MHz Oscillator (Maxim)
% 12 MHz Clock from PSoC device
% 32 kHz Clock from PSoC device

* Memory

% 32 Mb Page-Mode Flash Memory (Spansion)
% 128 Mb SPI Flash Memory (Spansjon

* Interfaces

% USB 2.0 (PSoC)
« JTAG Programming/Configuration Port
« Temperature Sensor (Texas Instruments)

* Buttons and switches

«» Four User LEDs

59

« Four PSoC Cap Sense capacitive switches
« Four FPGA user “pushbuttons” (forwarded from PSa@p Sense switches)
+ Reset Push Button Switch
« User 1/0 and expansion
+ Digilent 6-pin header (2)
% 2x20 0.1” Expansion Connector
* Configuration and Debug

% JTAG

60

Hardware Flow Diagram:

YERILOG PROGRAM
COMPILED IN

COMPUTER

:

STHNTHESIS

l

MAPPING

AND
ROUTING

l

GENERATION

OF
PROGRAMBABLE

FILE

FPGABOARD
SPARTAN A

NETLIST DOWN LOAD

FOR CONFIGURING
THE FPGA BOARD

Figure 22 Flow Diagram

61

Spartan- 3A Evaluation Board Picture

61 [E=8}

g1y) - (P60
omEJOE[]zu
O tdl

]lr_ibgaﬁﬁgﬁgﬁ
| : g ,_E,'IE By GO
_-“ﬂ '—-Olh'.l‘ilﬂ
N =

' —_—
-

Y

74 an LntE s

“l‘ l“- |l!o I!!-

o

=
®

(@]

M
(&)

W
P

L

6c4 =]
LIOBE] o 011

l!o; n_ull -
'.I_l'

3.3V gL SDA GND

Elwmm Ul

IILE
HEH

D2 D3 D4 D5

 F
&
JP3

Figure 23 Spartan-3A Evaluation Board

A &

e R WA -

(004

Functional Description:

A Xilinx Spartan-3A (XC3S400A-4FTG256C) 400 K gatePGA and a Cypress
Cy8C24894 PSoC Mixed-Signal Array are the primagmponents of the Avnet
Spartan-3A evaluation board. In addition to omldoprocessing functions, the PSoC
device provides off- board communication via a UZB) full-speed interface.
Communication between the PSoC and FPGA is fagtitdoy a 3.3 V level RS-232
interface between the two devices. This, alondp wéveral GPIO lines interconnecting
the PSoC and FPGA, provide control and data-tramsézhanisms. A high-level block
diagram of the Spartan-3A evaluation board is showfigure 23. As can be seenin 2

Figure 23, the USB controller (PSoC), an SPI pang an 1"2C port provide off-board
communication mechanisms. On-board memory consisasl28 Mbit SPI memory that
may be used by either the PSoC or the FPGA, withA-Bccess controlled by the PSoC;
and 32 Mbit parallel Flash memory interfaced toER&A. Subsequent sections provide

details of the board design.

Xilinx Spartan-3A FPGA:

The Xilinx XC3S400A-4FTG256C device designed onbe tSpartan-3A evaluation
board provides four I/0O banks with Vccaux and l/@tage of all banks fixed at +3.3 V.
The ability to power Vcco and Vccaux from a commaihis a feature of the Spartan-3A
that allows a lower-cost board design. Note thatabse Vccaux is set at +3.3 V, each

design’s UCF must contain the statement:

CONFIG VCCAUX = “3.3%

The four I/O banks are described in Table 11 artdileéd 1/O pin usage is provided
throughout this document. Note that all pins utidizare bidirectional (regardless of

usage), the XC3S400A input-only pins are not wdizn this implementation.

63

Block Diagram

120 "
Paort
E . Twio B-pin Headers
12C WOs (4} 3.3V, GND
Temp ol I
Sensor
sM -
Port
sM 2530 Conn
Memary fE——— B 35 User f0s
128Mb 3.5V, BW, GND
b
-
124z :h-n:;
e usBe oz Clack Spartan-3A
ot Controller ME—GPI0s [12)—Jm XCIS5400A
(Ps0OC) W UART— I FTZ56 I Done LED
JTAG—J
» User LEDs
(4}
18MHz ¢) P“:::::’h
Oscillator AM 2 8/ 3M x 18
2 X
=
BYUSE o) paer [
Supply — 33w —p

Figure 24 Spartan-3A Block Diagram

64

2 ¥ 20 Expansion Connector (J4)

/0 Bank] Mumber of 1/'O
i Function pins
0 2% 20 BExpansion Connector (J4) a2
0 15 MHz Clock 1 (GCLE)
0 LED 1
0 LUART (FPGA-PSoC Communication) 2
0 Parallzl Flash 1
0 FPGA Configuration 1
1 2% 20 BExpansion Connector (J4) 1
1 LED 3
1 *C Interface 2
1 P2al 110 1
1 Parallzl Flash 26°
P SPI Interface o
2 Parallel Flash 16
2 12 MHz Clock 1 (GCLKD)
2 32 kHz Clock 1 (GCLK13)
2 LED (AWAKE) 1
2 FPGA Configuration {(M[0:2]) 3
3 Digilent Headers J&, J7) a
3 FPZA Besat (from PSoC) 1
3 “Pushbuttons” {CapSense via PSol) 4
3 PSSl 11O 11
3

M2

Table 11 1/O Allocation

Cypress PSoC Mixed-Signal Array:

The Cypress Cy8C24894 is a configurable deviceamoimy analog and digital blocks

and peripheral devices that allow the user to ereastomized configurations to support
As configured on the SpafBA evaluation board, the PSoC
provides a full-speed (12 Mbps) USB interfaR&-232, SPI and I"2C interfaces,
four capacitive touch-pads (the condition of whig sent to the FPGA), and 15 general-
purpose I/O lines (12 connected to the FPGA anektisonnected to header J9).A 6-pin

different applications.

header that is compatible with the Cypress NArdgrammer allows configuration of
the PSoC'’s Flash program store. Additionallye tPSoC’s JTAG interface may be
utilized to program the FPGA; e.g.,, the FP®A file transferred to the PSoC via

USB and the PSoC JTAG interface transfers tharfiethe FPGA.

65

Memory:

The Spartan-3A evaluation board is populated withhbparallel Flash memory (4
Mbytes) and 128 Mbit SPI Serial to support variogses of applications. Both Parallel
Flash and SPI Serial Flash may be used for FPGAiguoation. Figure 25 shows a
High-level block diagram of the memory interfacestlois board.

SPI Flash
| SPlAccess
e e
Control
Sl PsOC
Access
Select
Sp3A400
rl—— DI 0——
f——ops.s—— Parallel
—wpig—p Flash
-—Contml—}

Figure 25 Memory Interfaces

Parallel Flash:

Parallel Flash memory consists of a single 32 Nip&nsion S29GL0O32N in a TSOP-56
package interfaced to the FPGA. This device (Ufdy be utilizedina4 M x 8 or a 2
M x 16 configuration by control of the Flash_BYTE#ynal. Flash BYTE# is pulled
low through a 10 K resistor to establish thé/4x 8 default configuration that may
be used for FPGA configuration. Following configtion, the FPGA may drive
Flash_BYTE# high to establish the 2 M x 16 confagion. Jumper JP1 may be used to
write-protect the Flash memory by placing a shumbss pins 1 and 2; default setting is
JP1 open. Note the PCB layout also supports thee sgpansion Flash device in a
TSSOP-48 package. Table 12 provides the FPGA/FLAIBHBIL.

66

Parallel Flash Signal FPGA Ping# Parallel Flash Signal FPGA Ping
Flash CE# P15 Flash Do T14
Flash OE# B15 Flash D1 B13
Flash WE# MN13 Flash D2 T13

Flash RY/BY# Ad Flash D3 P12
Flash BYTE# MN14 Flash D4 Ma
FLASH BESET# T10 Flash D3 P7
Flash AQ P& Flash D& TG
Flash A1 MN1G Flash D7 15
Flash A2 L13 Flash Da P11
Flash A3 K13 Flash D2 R3
Flash A4 M5 Flash D10 M1
Flash A5 E Flash D11 M7
Flash A& L14 Flash D12 Ra
Flash A7 L1& Flash D13 T4
Flash A8 J12 Flash D14 Pe
Flash Ag J13 Flash D15 M14 iFlash AD)
Flash A10 516
Flash A11 F1&
Flash A12 H13
Flash A13 514
Flash A14 Ele
Flash A15 F15
Flash A1& G13
Flash A17 F14
Flash A18 E14
Flash A19 F13
Flash A20 C16
Flash AZ21 015

Table 12 Parallel Flash Interface Pinout

Serial SPI Flash:

128 Mbits of serial Flash memory is provided bypaiSsion S25FL128P device (U19)
interfaced to the Spartan- 3A FPGA via its dedde®®| interface, and to the Cypress
PSoC device via a 2:1 multiplexer (U20). This nmlétxer is controlled by the PSoC,
which is master of this SPI interface. There are $PI modes as depicted in Figure 25;
PSoC/FPGA-->SPI Flash (PSoC_SPI_MODE=0) and PSoSFPGA
(PSoC_SPI_MODE=1).

In the PSoC/FPGA—-> SPI Flash mode, either the PSoC or the FPGA megsacthe

SPI Flash by driving its select line low. Thisdsne through an AND gate (U21) that
will drive the SPI Flash’s chip select line (SF_$#llow in response to a low s elect
signal from the FPGA (FPGA_SPI_SEL#) or the PSoSo_SPI_SEL). Note that the
SPI clock line (SPI_CLK) may be driven by eithee tRSOC or the FPGA. Since this

67

configuration has the potential for conflict, ietf?SoC intends to access the SPI Flash, it
must drive the FPGA’'s PROG_B pin low to place tiRGA in a reset state to prevent it

accessing the SPI Flash.

In the PSo&—> FPGA mode (PSoC_SPI_MODE=1) the multiplexer isfigomed to
interconnect the PSoC and FPGA SPI interfacesptiipose of this is to enable slave
serial configuration from PSoC to FPGA. In thisdadhe PSoC is master and the FPGA
will act as slave. Since the FPGA’s SPI interfecenly active during SPI boot mode,
implementation of the FPGA'’s slave interface muset dccomplished via firmware.
While this configuration happens to share commars pvith the FPGA SPI port, they
will function as slave serial in this mode. Tal@ provides the FPGA’s SPI interface

pinout.

6-pin header J8 may be used to allow the PSoCgarekthe SPI interface to an external
environment. Since the PSoC’s SPI select sign@b(@ SPI_SEL#) is common to the
SPI Flash as well as the SPI expansion interfdwe,default jumper on JP6 must be

removed prior to using the SPI expansion. Tablerb&ides the J8 pinout.

Note that J8 pin 6 provides +3.3 V to another bp#rthat board is already powered then

J8 pin 6 must not be connected.

Signal FPGA Ping
FRPGA MOS| P10
FPGA MISO T14

SPI CLK B14
FPEA SP1 SEL T2

Table 13 SPI Interface Pinout

Signal J8 Pin#
PSoC SPI SEL# 1
SPI FLASH S| 2
SPI_FLASH SO 3

SPI CLK 4

GND 5

+3.3V 5

Table 14 SPI Header J8 Pinout

68

Interfaces:

Interfaces on the Spartan-3A evaluation board sbi$iUSB 2.0 via the PSoC, two 0.1”
6-pin right-angle headers designed to T M interfac®igilent modules, a 0.1” 2 x 20
header providing connectivity to available FPGA gratpurpose 1/O pins, a 0.1” 1 x 6
header for SPI interface expansion, and a sensmidang temperature information via

an | 2C interface.

USB 2.0:

USB Mini-AB connector P1 connects the PSoC dewvica full-speed (12 Mbps) USB
host. Power supplied by the USB host via conneetbr(+5V_USB) may be used to
power the Spartan-3A evaluation board by jumpeding 1:2.

USB-UART:

The USB-UART interface is used for communicatiomsen the PSoC and the FPGA
but is not utilized externally (e.g., there is n8-R32 connector). This interface operates
at 3.3 V and is the mechanism by which the FPGA namicates via USB; e.g., the
PSoC device provides UART/USB translation. Notd tha net names UART_RXD and
UART_TXD on the schematic are named in terms of B®0C connection. Net
UART_RXD is an output from the FPGA and an inputthe PSoC, as shown by the
direction of the off-page connectors on the scheamathe FPGA Tx signal is connected
to the PSoC Rx signal and then the PSoC re-brotmdthe data to the USB. For
incoming data from USB, the PSoC transmits on tA&RWU_TXD net which is actually
an Rx for the FPGA.

MNet Name Description FPGA Pin &
FPGA RS232 Ry | Received Data, RD A2
(Transmitted by PsOC)
FRGA RS232 Tx | Transmit Data, TD B3
(Received by PsOC)

Table 15 USB-UART Signals

69

Digilent Headers:

Two right-angles, 6-pin (1 x 6 female) Digilent dees (J6, J7) are interfaced to the
FPGA, with each header providing 3.3 V power, gdhuand four I/O’s. These headers
may be utilized as general-purpose I/Os or maydeel o interface to Digilent modules.
J6 and J7 are placed in close proximity (0'9”-cesjten the PCB in order to support dual
Digilent modules. Figure 26 shows the pinout of Ehgilent headers; Table 16 provides

the FPGA pinout.

N TS TN TS
2 o oo oA =2 AT =T =T T
T =Z0000 =20 000
+ 0 O o a o YT O o000
JE| OO O] O JT OO OO O

Figure 26 Digilent Header Pinout

J6 Signal FPGA Ping
DIGlz2 0 M
DIl2 1 A
Dlialz2 2 K1
DlGl2 3 €]

J7 Signal FPGA Ping
Dliall O Hi1
Dl 1 P2
DGl 2 P
DIGl 3 N2

Table 16 Connections
Miscellaneous 1/O:

Four user push button switches are provided viaa#pe touch-pads connected to the
Cypress PSoC device. A “touch” at any of these fmads is sensed by the PSoC and
forwarded to the FPGA; these “push buttons” andr thedationship to the FPGA are
depicted in Table 17. Note that FPGA_RESET is dt"seset intended for FPGA code

usage and does not perform any type of FPGA haelveset.

70

PSoC Cap Sense

FPGA “Pushbutton”

FPGA Ping

EF FPGA PUSH A K3
EFZ FPGA_PUSH B HE
EF3 FPGA_PUSH C L3
EF4 FPGA RESET Ha

LEDs:

Four LEDs are provided for signaling purposes amthected to the FPGA as shown in

Table 17 Connections

Tablel8. The corresponding FPGA pin must be drhigh to light an LED.

LEDs FPGA Ping
LEDT (D5) 014
LEDZ (D4) C16
LEDA (03 15
LED4 (D2) B1&

GPIO Header (2 x 20):

Some unused FPGA pins are connected to 0.1” 2 pir2Geader J4. Signal names and

Table 18 LED Assignment

connector pin/FPGA pin connections are identifiadTable 19. All I/O’s are +3.3 V

CMOS.

FPGA pin # /0 Signal c“g:‘:‘;“” c"gi"fﬁ“’r VO signal FPGA pin #
n'a GND 1 2 5V v
na 3.3V 1 BANKD 102 Ca
Al BANKO 101 5 5 BANKO 104 B4
E BANKO 103 7 3 BANKO 106 HE
&E BANKO 105 g 0 BANKD 108 Ci2
NE BANKD 107 11 12 BANKO 1010 o1 1
B2 BANKD 100 13 1 BANKD 1012 G
Al BANKO 1011 15 16 BANKO 1014 D10
A1D BANKO 1013 17 18 BANKO 1016 E10
AD BANKO 1015 E 20 BANKO 1016 i
Ca BANKD 1017 2 22 BANKO 1020 CE
A8 BANKO 1013 23 2 BANKO 1022 E7
B8 BANKO 1021 25 3 BANKO 1024 iE
AT BANKD 1023 57 2 BANKO 1026 D7
7 BANKD 1025 2 0 BANKO 1028 C6
AB BANKD 1027 A 2 BANKO 1030 Cs
E6 BANKO 1023 23 34 BANKZ 102 D4
A5 BANKO 1031 5 % BANKO 1032 B4
3E BANKI 101 37 38 BANKZ 101 D3

GND 73 40 GND

Table 19 GPIO Pin Assignment

71

[2CTemperature Sensor:

A Texas Instruments TMP100 digital temperature geissinterfaced to the PSoC via an
| 2C interface. The TMP100 has two 2 address pisetaohe low-order | C slave address
bits; both pi ns are pulled low in this applicatiproviding an address of 0x90 (W) and
‘0x91 (R).The TMP100 will provide temperature raagi over its specified operating
temperature, -55 °C to +125 °C; well beyond thditgbof the Spartan-3A evaluation

board to operate.

Module Clocks:

Three clocks are provided to the FPGA; 16.0 MHarfra Maxim MAX7381 CMOS
oscillator (U6), and 12.0 MHz and 32.0 kHz from #80C. Table 20 provides FPGA

connection details.

Clocks FPGA Ping
16.0MHz C10 (GCLK4)
12.0MHz NG (GCLKO)
32.0kHz T7 (GOLK13)

Table 20 Module Clocks
Configuration:

The Spartan-3A evaluation board provides fowchanisms to program and
configure the FPGA; these are JTAG, ParaRtdsh, Serial Flash, and the Cypress
PSoC. The storage devices (Flash and SPI) canngtribgrammed via the JTAG
connector. The FPGA is the only thing in the JTAGio on the Spartan-3A evaluation
board; however, depending on the setting of condigon jumpers M [2:0], any of these
can be the configuration source. The serial FIRsinallel Flash, and PSoC are described

earlier in this document.

Programming the Spartan-3A evaluation board viarBlamy Scan requires that a JTAG
download cable be attached to the 14-pin 2 mm espdweader J5 (Figure 27) with a
ribbon cable or with flying leads. If theilikx Parallel Cable IV is used, the

ribbon cable connector mates with the keyed Jhector.

72

T

e E
" OO
ol

ew

Figure 27 Parallel IV Connector

O|C|33v
Ol o] T™s
Ol O] ek
O|0O|Too
OO TOI

Configuration Modes:

The following table shows the Spartan-3A aa#bn board configuration modes
set by Jumper JP4. All mode jumpers (includimg PUDC_B pin) are pulled high,
with jumper installation grounding the connectioAdding a jumper to the MODE pins
ties them to a pull-down that is stronger than deéault pull-up. This is necessary in
order for the PSoC to overdrive the MODE jumpergardless of whether or not the
jumpers are installed. Figure 6 depicts configorajumper JP4; Table 21 provides the
various configuration settings at JP4, with recomdsel settings highlighted. A push
button labeled “PROG” (SW1) is pulled high awndnnected to the FPGA PROG
via AND gate U9; also connected to U9 i e tPSoC (PSOC_FPGA_PROG).
Pushing SW1 (or driving PSOC_FPGA_PROG low) actisahe FPGA programming
mechanism. Upon releasing SW1 (or PSOC_FPGA PROGgghigh), a re-
configuration is initiated based upon the settifgl®4. A blue LED (D7) should light
when FPGA “DONE” is asserted.

73

Mode PC Pull- Contiguration Mode Jumpers
up 1-2 (M2) 3-4 (M1) 5-6 (MO0) 7-8 (PUDC B}
Master Serial Yes Closed Closed Closed Closed
Master Serial Mo Closed Closed Closed Cpen
Slave Senal Yes Cpen Cpen Cpan Closed
Slave Serial Mo Open Cpen Open Opean
Master SPI Yes Closed Closed Open Closed
IMaster SPI Mo Closed Closed Open Cpen
EPI Up Yes Closed Cipen Closed Closed
EPI Up Mo Closed Cipen Closed Cpan
Slave Parallel Yes Open Cpen Closed Closed
Slave Parallel Mo Dpen Cipen Closed Cpen
JTAG Yas Cpen Closad Opean Closad
JTAG Mo Open Closed Open Open

Table 21 JP4 Settings

r.nl'O 1| GND
”"'Ir'G' (1| eND

LPupc_& | () [(| eND

/

Figure 28 Configuration Jumper (JP4)
Module Power.

The Spartan-3A evaluation board requires aV+iput at barrel jack J3 or +5 V
via USB cable. Jumper JP2 is used to select betieebarrel jack (JP2 = 2:3) or USB
power (JP2 = 1:2). LED D1 should be illuminatedewtpower is applied. Jumper JP7
1:2 selects the barrel jack/USB input power; JF¥i&:not applicable. Note that the

barrel jack requires a 2.1 mm plug.

Application of 5 V power is sensed by a Texas lmsnts TPS3809K33 Voltage
Supervisor. When power is above the TPS380b®é&shold, its active-low reset output
is driven high supplying the enable for a Texastruments TPS62290 1A step-down
converter (U5) to supply the +3.3 V rail. The 3/3ail provides the enable (a Texas
Instruments TPS3106K33 Voltage Supervisor) to aose@cTPS62290 (U24) which

74

supplies the +1.2 V rail. When the+1.2 V rail isose the TPS3106’s threshold, its
active-low reset output is released allowing thevgaeon reset signal (PO_RESET#) to
go high. As mentioned above, pushbutton switch 3v8¥ be used to momentarily force
(via AND gate U23) PO_RESET# low.

Note th@-ohm jumper JT1 may be utilized to shke t
operating mode of the TPS62290 converter; JH11:2 (default) sets fixed-
frequency PWM mode, JT1 2:3 sets power-save mader(atic PFM/PWM switching).

Figures, 3® and 31, below, show details of the +3.3 V and
+1.2 V power supplies. Figure 29 shows that +1@Wer (bottom trace) is delayed 114
ms from +3.3 V power. Using a finer scale, Figus&sand 31 shows the rise of +3.3 V

and +1.2 V power (respectively) is monotonic anttigtfree.

I—H'I-Wm e i T S R e et T b e

M2o.oms A Chl £ 440mV
13 Juh 2008

07.48;20

Figure 29 Power Supply Sequencing

75

Prevu

o
u

S00my

" ik o1 s

M oomV

M1, 00ms A Chl &£ 740my

i 1a.40%

Figure 31 +1.2v Power Supply Startup

13 Jun 20

76

PCB Stackup:

Figure 32 shows 4-layer stacks up of the SpartarE¥Aluation Kit Printed Circuit
Board (PCB). The PCB substrate is FR4- class eptass with 1/20z copper used for
all layers.

Total Height (1.59092mm)

Core {0.32004mnm)
Prepreg (0. 78 mm)
Core (0.32004mm)

Top Layer —

GND pane —a
Inner Signal / PWR Fane —a-

Bottom Layer —

Figure 32 PCB Layer Stack

77

