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INTRODUCTION TO VLSI DESIGN 

                         
1.1 INTRODUCTION 
 

The word digital has made a dramatic impact on our society. More significant is a 

continuous trend towards digital solutions in all areas –from electronic instrumentation, 

control, data manipulation, signals processing, tele communications, etc., to consumer 

electronics. Development of such solutions has been possible due to good digital system 

design and modeling techniques. 

 
 

 
 
1.1.1 VLSI DESIGN  
 

The complexity of VLSI being designed and designed and used today makes the manual 

approach to design impractical. Design automation is the order of the day. With the rapid 

technological developments in the last two decades, the status of VLSI technology is 

characterized by the following: 
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� A steady increase in the size and hence the functionality of the ICs. 
 

� A steady reduction in feature size and hence increase in the speed of operation as 
well as gate or transistor density. 

 
� A steady improvement in the predictability of circuit behavior. 

 
� A steady increase in the variety and size of software tools for VLSI design.  

 
The above developments have resulted in a proliferation of approaches to VLSI design. 
 
 
1.1.2 VLSI DESIGN FLOW 
 

The design process, at various levels, is usually evolutionary in nature. It starts with a 

given set of requirements. Initial design is to be developed and test impact analyst must 

be considered. The Y-chart (first introduced by D. Gajski) is shown in below figure1 

illustrates a design flow for most logic chips, using design activities on the three different 

axes (domains). Y chart of three major domains, they are: 

 
� Behavioral domain 

 
� Structural domain  

 
� Geometrical layout domain 
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Figure 1                   Typical VLSI design flow in three domains (Y-chart representation) 

   

The design flow starts from the algorithm that describes the behavior of the target chip. 

The corresponding architecture of the processor is first defined. It is mapped onto the 

chip surface by floor planning. The next design evolution in the behavioral domain 

defines finite state machines (FSMs) which are structurally implemented with functional 

modules such as registers and arithmetic logic units (ALUs). These modules are then 

geometrically placed onto the chip surface using CAD tools for automatic module 

placement followed by routing, with a goal of minimizing inter- connects area and signal 

delays. 

 

The third evolution starts with a behavioral module description. Individual modules are 

then implemented with leaf cells. At this stage the chip is described in terms of logic 

gates (leaf cells), which can be placed and interconnected by using a cell placement & 

routing program. The last evolution involves a detailed Boolean description of leaf cells 

followed by a transistor level implementation of leaf cells and mask generation. In 

standard-cell based design, leaf cells are already pre-designed and stored in a library for 

logic design use. 
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1.1.3 ABSTRACTION MODEL 

 

The model divides the whole design cycle into various domains (see figure 2) with such 

an abstraction through a division process the design is carried out in different layers. The 

designer at one layer can function without bothering about the layers above or below. The 

thick horizontal lines separating the layers in the figure signify the compartmentalization. 

As an example, le us consider design at the gate level. The circuit to be designed would 

be described in terms of truth tables and static tables. With these as available inputs, he 

has to express them as Boolean logic equation and realize them i8n terms of gates and 

flip-flops. In turn these form the inputs to the layer immediately below. 

Compartmentalization of the approach to design in the manner described here is the 

essence of abstraction; it is the basics for the development and d use of CAD tools in the 

design at various levels. 

                  
                 
1.1.4 ASIC DESIGN FLOW 
 

As with any other technical activity, development of an ASIC starts with an idea and 

takes tangible shape through the stages of development as shown in figure 3 and shown 

in detail in figure 4.The first step in the process is to expand the idea in terms of behavior 

of the target circuit. Through stages of programming, the same is fully developed into a 

design description- in terms of well defined standard constructs and conventions. 
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Figure 2                 Design domain and levels of abstraction 
 
 
 
 
 

 
 

Figure 3             Major activities in ASIC design 
 

 

The design is tested through a simulation process; it is to check, verify, and ensure that 

what is wanted is what is described. Simulation is carried out through dedicated tools 

.with every simulation results are studied to identify errors in the design description. The 

errors are corrected and another simulation run is carried out. Simulation and changes to 

design description together form a cyclic iterative process, repeated until an error –free 

design is evolved. 
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                 Design description is an activity independent of the target technology or 

manufacturer. It results in a description of the digital circuit. To translate it into a tangible 

circuit, one goes through the physical design process. The same constitutes a set of 

activities closely linked to the manufacturer and the target technology.  

 
1.1.5 DESIGN DESCRIPTION 
 
 

The design is carried out in stages. The process of transforming the idea into a detailed 

circuit description in terms of the elementary circuit components constitutes design 

description. The final circuit of such an IC can have up to a billion such components; it is 

arrived in a step-by-step manner. 

 

                                  The first step in evolving the design description is to describe the 

circuit in terms of its behavior. The description looks like a program in a high level 

language like C. once the behavior level design description is ready, it is tested 

extensively with the help of simulation tool; it checks and confirms that all the expected 

functions are carried out satisfactorily. If necessary, this behavioral level routine is 

edited, modified, and rerun – all done manually. Finally, one has a design for the 

expected system- described at the behavioral level. The behavioral constructs not 

supported by the synthesis tools replaced by data flow and gate level constructs. To 

surmise, the designer has to develop synthesizable codes for his design. 
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Figure 4           ASIC design and development flow. 
 

 
 

The design at the behavioral level is to be elaborated in terms of known and 

acknowledged functional blocks. It forms the next detailed level of design description. 

Once again the design is to be tested through simulation and iteratively corrected for 

errors. The elaboration can be continued one or two steps further. It leads to a detailed 

design description in terms of logic gates and transistor switches. 
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1.1.6 OPTIMIZATION 
 

The circuit at the gate level- in terms of the gates and flip-flops- can be redundant in 

nature. The same can be minimized with the help of minimization tools. The minimized 

design is converted to a circuit in terms of the switch levels cells from standard libraries 

provided by the foundries. The cell based designed generated by the tool is the last step in 

the design process; it forms the input to the first level of physical design. 

 
1.1.7 POST LAYOUT SIMULATION 
 

Once the placement and routing are completed the performance specifications like silicon 

area, power consumed, path delays, can be computed. Equivalent circuit can be extracted 

at the component level and the performance analysis carried out. This constitutes the final 

stage called “verification”. One may have to go through the placement and routing 

activity once again to improve performance. 

 
1.1.8 CRITICAL SUBSYSTEMS  
 

The design may have critical subsystems. Their performance may be crucial to the overall 

performance; in other words, to improve the system performance substantially, one may 

have to design such subsystems afresh. The design here may imply redefinition of the 

basic feature size of the component, component design, and placement of the 

components, or routing done separately and specifically for the sub systems. A set of 

masks used in the foundry may have to be done a fresh for the purpose. 

 
 
1.2 EMERGENCE OF HDLs 
 

For a long time, programming languages such as FORTRAN, Pascal, and C were being 

used to describe computer programs that were sequential in nature. Similarly, in the 

digital design field, designers felt the need for a standard language to describe digital 
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circuits. Thus, Hardware Description Languages (HDLs) come into existence. HDLs 

allowed the designers to model the concurrency of process found in hardware elements. 

 
 
1.2.1 IMPORTANCE OF HDLs  
 

Designers can be described at a very abstract level by use of HDLs. Designers can write 

their RTL description without choosing a specific technology. Logic synthesis tools can 

automatically convert the design to any fabrication technology. 

By describing designs in HDLs, functional verification of the design can be done early in 

the design cycle. Since designers work at the RTL level, they can optimize and modify 

the RTL description until it meets the desired functionality. Designing with HDLs is 

analogous to computer programming. A textual description with comments is an easier 

way to develop and debug circuits.  

1.2.2 HARDWARE DESCRIPTIVE LANGUAGE : 

 

There are two main hardware descriptive languages in use in the industry today for Very 

Large Scale Integration (VLSI) of chips. They are:  

 
• Verilog HDL 

 
• VHDL 

 
1.2.3 OVERVIEW OF VERILOG HDL: 
 
 

Verilog HDL is a Hardware Description Language (HDL).  A Hardware Description  

Language is a language used to describe a digital system, for example, a computer or a 

component of a computer.  One may describe a digital system at several levels.  For 

example, an HDL might describe the layout of the wires, resistors and transistors on an 

Integrated Circuit (IC) chip, i.e., and the switch level.  Or, it might describe the logical 

gates and flip flops in a digital system, i.e., the gate level.   An even higher level 

describes the registers and the transfers of vectors of information between registers.   This 
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is called the Register Transfer Level (RTL).  Verilog supports all of these levels. The 

industry is currently split on which is better.  Many feel that Verilog is easier to learn and 

use than VHDL. 

Verilog was introduced in 1985 by Gateway Design System Corporation, now a part of 

Cadence Design Systems, Inc.’s Systems Division.   

               Verilog HDL allows a hardware designer to describe designs at a high level of 

abstraction such as at the architectural or behavioral level as well as the lower 

implementation levels (i.e. , gate and switch levels) leading to Very Large Scale 

Integration (VLSI) Integrated Circuits (IC) layouts and chip fabrication.  A primary use 

of HDLs is the simulation of designs before the designer must commit to fabrication. 

 
 
1.2.4 POPULARITY OF VERILOG HDL: 
 

� Verilog HDL is a general purpose HDL that is easy to use and learn. It is similar 

in syntax to the C programming language. 

 

� Verilog HDL allows different levels of abstraction to be mixed in the same model. 

 

� Most popular logic synthesis tool support Verilog HDL. This makes it the 

language of choice for designers. 

 

All fabrication venders provide Verilog HDL libraries for post logic synthesis simulation. 

Thus, designing a chip in Verilog HDL allows the widest choice of venders. 

 
1.2.5 OVERVIEW OF VHDL: 
 

As the size and the complexity of digital system increases, more computer aided design 

tools are introduced into the hardware design process. The early papered pencil design 

methods have given way to sophisticated design entry, verification and automatic 

hardware generation tools. The newest addition to this design methodologies the 



  

 

 

11 

introduction of hardware description language (HDL).Actually the use of this language is 

not new languages such as CDI, ISP and AHPL have been used for last some years. 

However, their primary application has been the verification of designs architecture. 

They do not have the capability to model design with a high degree of accuracy that is, 

their timing model is not precise and/or their language construct implies a certain 

hardware structure newer languages such as VHDL have more universal timing models 

and imply no particular hardware structure. 

 

                                                               Hardware description languages have two main 

applications documenting a design and modeling it. Good documentation of a design 

helps to ensure design accuracy and design portability. Since a simulator supports them 

inherent in a HDL description can be used to validate a design. Prototyping of 

complicated system is extremely expansive, and the goal of those concerned with the 

development of hardware languages is to replace this prototyping process with validation 

through simulation and silicon compilation. 

 
                                                       Once an entity has been modeled, it needs to be 
validated by the VHDL system. A typical VHDL system consists of an analyzer and a 
simulator. The analyzer reads in one or more design units contained in a single file and 
compiles them into a design library after validating the syntax and performing some static 
semantic   checks. The design library is a place in the host environment where compiled 
design units are stored. 
 

         The simulator simulates an entity, represented by an entity-architecture pair or by a 

configuration, by reading in its compiled description from the design library & then 

performing the following steps: 

 
1. Elaboration 

 
2. Initialization 

 
3. Simulation 

 

VHDL is an acronym for VHSIC Hardware description language (VHSIC is an acronym 

for very high speed integrated circuits). It is a hardware description language that can be 
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used to model a digital system at many levels of abstraction, ranging from the algorithmic 

level to the gate level. 

The complexity of a digital system being modeled could vary from that of simple gate to 

a complete digital electronic system, or anything in between. 

The digital system can also be described hierarchically. Timing can also be explicitly 

modeled in the same description.  

The VHDL language can be regarded as an integrated amalgamation of the following 

languages. 

� Sequential language. 

� Concurrent language. 

� Net list language. 

� Timing specifications. 

� Waveform generation language.  

Therefore, the language has constructs that enable you to express the concurrent or 

sequential behavior of a digital system as an interconnection of components. All the 

above constructs may be combined to provide a comprehensive description of the system 

in a single model. 

The language not only defines the syntax but also defines very clear simulation semantics 

for each language construct. Therefore models written in this language can be verified 

using a VHDL simulator. It inherits many of its features especially the sequential part, 

from the Ada programming language. Because VHDL provides an extensive range of 

modeling capabilities, it is often difficult to understand, fortunately, it is possible to 

quickly assimilate a core subset of the language that is both easy and simple to 

understand without learning the more complex features. The complete language however 

has sufficient power to capture the descriptions of the most complex chips to a complete 

electronic system. 
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1.3 BASIC CONCEPTS OF VERILOG: 

1.3.1 LEXICAL CONVENTIONS  

The basic lexical conventions used by Verilog HDL are similar to those in the c 

programming language. Verilog contains a stream of tokens. Tokens can be comments, 

delimiters, numbers, string, identifiers, and keywords. Verilog HDL is a case-sensitive 

language. All keywords are in low case. 

1.3.2 WHITESPACE : 

Blank spaces (\b), tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is 

ignored by Verilog except when it separates tokens. Whitespace is not ignored in strings. 

1.3.3 COMMENTS: 

Comments can be inserted in the code for readability and documentation. There are two 

ways to write comments. A one-line comment starts with “//”. Verilog skips from that 

point to the end of line. A multiple-line comment starts with “/*” and ends with “/*”. 

Multiple-line comments cannot be nested. 

 

1.3.4 OPERATORS: 

Operators are of three type’s unary, binary, and ternary. Unary operators precede the 

operand. Binary operators appear between two operands. Ternary operators have two 

separate operators that separate three operands. 
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1.3.5 NUMBER SPECIFICATION 

There are two types of number specification in verilog: sized and unsized. 

Sized numbers  

Sized numbers are represented as <size> ‘<base format> <number>. 

<Size> is written only in decimal and specifies the number of bits in the number. Legal 

base formats are decimal (‘d or ‘D), hexadecimal (‘h or ‘H), binary (‘b or ‘B) and octal 

(‘o or ‘O). the number is specified as consecutive digits from 

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f. only a subset of these digits is legal for a particular base. 

Uppercase letters are legal for number specification. 

 

UNSIZED NUMBERS:  

Numbers that are specified without a <base format > specification are decimal numbers 

by default. Numbers that are written without <size> specifications have a default number 

of bits is simulator – and machine –specific (must be at least 32). 
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X OR Z VALUES:  

Verilog has two symbols for unknown and high impedance values. These values are very 

important for modeling real circuits. An unknown value is denoted by an x. a high 

impedance value is denoted by z. 

 

An x or z values sets four bits for a number in the hexadecimal base, three bits for a 

number in the octal base, and one bit for a number in the binary base. If the most 

significant bit of a number is 0, x, z, the number is automatically extended to fill the most 

significant bits, respectively, with 0, x, or z. This makes it easy to assign x or z to whole 

vector. If the most significant digit is 1, then it is also zero extended. 

NEGATIVE NUMBERS : 

Negative numbers can be specified by putting a minus sign before the size for a constant 

number. Size constants are always positive. It is illegal to have a minus sign between 

<base format > and <number>. 

 

UNDERSCORE CHARACTERS AND QUESTION MARKS : 

An underscore character “_” is allowed anywhere in a number except the first character. 

Underscore character are allowed only to improve readability of number and are ignored 

by Verilog. 
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                A question mark “?” is the Verilog HDL alternative for z in the context of 

numbers. The ? Is used to enhance readability in the case x and case z statements 

behavioral modeling, where the high impedance value is a don’t acre condition. 

 

1.3.6 STRINGS: 

A string is a sequence of character that is enclosed by double quotes. The restriction on a 

string is that it must be contained on a single line, that is, without a carriage return. It 

cannot be on multiple lines. Strings are treated as a sequence of one-byte ASCII values. 

 

1.3.7 IDENTIFIERS AND KEYWORDS: 

Keywords are special identifiers reserved to define the language constructs. Keywords 

are in lowercase. Identifiers are names given to objects so that they can be referenced in 

the design. Identifiers are made up of alphanumeric characters, the underscore ( _ ) and 

the dollar sign ($) and are low case sensitive. Identifier starts with an alphabetic character 

or an underscore. They cannot start with a number or a $ sign. 

 

1.3.8 ESCAPED IDENTIFIERS: 

Escaped identifiers begin with the backlash ( \ ) character and end with white space ( 

space, tab, or new line ).all characters between backlash and whitespace are processed 
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literally. Any printable ASCII character can be included in escaped identifiers. The 

backlash or whitespace is not considered a part of the identifier. 

 

1.4 DATA TYPES:  

1.4.1 VALUE SET 

Verilog supports four values and eight strengths to model the functionality of real 

hardware. The four value levels are listed in table 1. 

Table 1               Value levels 

 

 

In addition to logic values, strength levels are often used to resolve conflicts between 

drivers of different strengths in digital circuits. Value level 0 and 1 can have the strength 

levels listed in table 2. 
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Table 2      Strength levels 

 

If two signal of unequal strength are driven on a wire, the stronger signal prevails. For 

example, if two signals of strength strong 1 and weak 0 contend, the result is resolved as 

a strong1. If two signals of equal strengths strong 1 and strong 0 conflict, the result is an 

x. Strength levels are particularly useful for accurate modeling of signal contention, MOS 

device, dynamic MOS, and low-level devices. Only trireg nets can have storage 

strengths large, medium, and small. 

 

1.4.2 NETS: 

  

Net represent connection between hardware elements. Just as in real circuits, nets have 

values continuously driven on them by the outputs of devices that they are connected to.      

In figure 5  net a is connected to the output of and gate g1.net a will continuously assume 

the value computed at the out put of gate g1, which is b & c. 

  

 

Figure 5              Example of nets 
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Nets are declared primarily with the keyword wire. Nets are one-bit values by default 

unless they are declared explicitly as vectors. The term wire and net are often used 

interchangeable. The default value of a net is z .nets get output value of their drivers. If a 

net has no driver, it gets the value z. 

 

 
 
 
1.4.3 REGISTERS: 
 

Registers represent data storage elements. Registers retain until another value is placed 

onto them. Do not confuse the term registers in Verilog with hardware registers from 

edge-triggered flip-flops in real circuits. In Verilog, the term register merely means a 

variable that can hold a value. Unlike a net, a register can be changed anytime in a 

simulation by assigning a new value to the register. 

           Register data types are commonly declared by the keyword reg. the default value 

for a reg data type is x.  

 

Example 1         
 

 
 
 
1.4.4 VECTORS: 
 

Nets or reg data types can be declared as vectors. If bit width is not specified, the default 

is scalar (1-bit). 
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Vectors can be declared at [high#: low #] or [low#: high #]. But the left number in the 

squared brackets is always the most significant bit of the vector. In the example shown 

above, bit 1 is the most significant bit of vector vitual_addr. 

 

1.4.5 STRINGS: 

Strings can be stored in reg. the width of the register variables must be large enough to 

hold the string. Each character in the string tales up 8 bits (1 byte). If the width of the 

register is greater than the size of the string, Verilog fills bits to the left of the string with 

zeros. If the register width is smaller than the string width, Verilog truncates the leftmost 

bits of the string. It is always safe to declare a string that is slightly wider than necessary.  

 

 

Special characters serve a special purpose in displaying strings, such as newline, tabs, and 

displaying argument values. Special characters can be displayed in string only when they 

are preceded by escape characters, as shown in the table 3. 

 



  

 

 

21 

Table 3       Special characters 

 
 
 
1.5 SYSTEM TASKS & COMPILER DIRECTIVES:  
 
1.5.1 SYSTEM TASKS: 
 

Verilog provides standard system tasks to do certain routine operations. All system tasks 

appear in the form $<keyword>. Operations such as displaying on the screen, monitoring 

values of nets, stopping, and finishing are done by system tasks. 

 

Displaying information 

$display is the main system task for displaying values of variables or strings or 

expressions. This is one of the most useful tasks in Verilog. 

Usage: $display (p1, p2, p3,…, pn); 

P1, p2, p3,…., pn can be quoted strings or variables or expressions. The format of 

$display is very similar to print f in “c”. A $display inserts a newline at the end of the 

string by default. Strings can be formatted by using the format specifications listed in 

table 4. 
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Table 4  String format specifications 

 

 

Monitoring information: 

Verilog provides a mechanism to monitor when its value changes. This facility is 

provided by the $monitor task. 

Usage: $monitor (p1, p2, p3.., pn); 

The parameters p1, p2... pn can be variables, signal names, or quoted strings. Monitor 

continuously monitors the values of the variables or signals specified in the parameter list 

and display all parameters in the list whenever the value of any one variable or signal 

changes. Unlike $display, $monitor  needs to be invoked only once. Only one monitoring 

list can be active at a time. If there is more than one $monitor statement in your 

simulation, the last $monitor statement will be the active statement. 

Two tasks are used to switch monitoring on and off. 

Usage: $monitor on; 

            $monitor off ; 

The $monitor on task enables monitoring and the $monitor off  tasks disables 

monitoring during a simulation. An example of monitor statement is given below. 
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Example 1  monitor statement  

 

 
 

Stopping & finishing simulation: 

The task $ stop is provided to stop during a simulation. 

Usage: $ stop; 

The $ stop task puts the simulation in an interactive model. The designer can then debug 

the design from the interactive mode. The $stop task is used whenever the designer wants 

to suspend the simulation and examine the values of signals in the design. 

The $finish task terminates the simulation. 

Usage: $finish; 

Examples of $stop and $ finish are shown below in example 2. 

 

Example 2     Stop and finish tasks 
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1.5.2 COMPILER DIRECTIVES:  

 

Complier directives are provided in Veriog. All compiler directives are defined by using 

the ̀<keyword> construct. We deal with two most useful compiler directives. 

• `define: 

The ̀ define directive is used to define text macros in Verilog. This is similar to # define 

construct in “C”. The defined constants or text macros are used in the Verilog code by 

preceding them with a ` (back tick). The Verilog compiler substitutes the text of the 

macro whenever it encounters a `<macro_name>. 

 

Example 3           ` Define directive  

 

• `include: 

The ̀  include directive allows you to include entire contents of a Verilog source file in 

another Verilog file during compilation. This works similarly to the #include in the “C” 

programming language. This directive is typically used to include header files, which 

typically contain global or commonly used definitions. 

Example 4  ` include directive  
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1.5.3 MODULES: 

A module in Verilog consists of distinct parts, as shown in figure 6. 

 
 

 
Figure 6   components of Verilog module 

 

A module definition always begins with the keyword module. The module name, port 

list, port declarations, and optional parameters must come first in a module definition. 

Port list and port declarations are present are present only if the module has any ports to 

interact with the external environment. The five components within a module are – 

variable declarations, dataflow statements, instantiation of lower modules, behavioral 

blocks, and tasks or functions. These components can be in any order and at any place in 

the module definition. The end module statement must always come last in the module 

definition .All components except module, module name, and end module are optional 

and can be mixed and matched as per design needs. Verilog allows multiple modules to 

be defined in a single file. The modules can be defined in any order in the file. 
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1.5.4 PORTS: 

Ports provide the interface by which a module can communicates with its environment. 

For example, the input/output pins of an IC chip are its ports. The environment can 

interact with the nodule only through its ports .the internals of the module are not visible 

to the environment. This provides a very powerful flexibility to the designer. Ports are 

also referred as “terminals”. 

1.5.5 PORT DECLARATION: 

All ports in the list of ports must be declared in the module. ports can be declared as 

follows: 

 

Each port in the lit is defined as input, output, or in out, based on the direction of the 

port signal. Thus, for the example of 4-bit full adder. 

Figure 7        full adder (4-bit) 
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Example 5         port declarations 

 

 
 

Note that all ports declarations are implicitly declared as wire in verilog. Thus, if a port is 

intended to be a wire, it is sufficient to declare it as output, input, or in out . Input or 

outputs are normally declared as wires. However, if output ports hold their value they 

must be declared as reg. 

 

1.5.6 PORT CONNECTION RULES: 

One can visualize a port as consisting of two units, one unit that is internal to the module 

another that is external to the module. The internal and external units are connected. 

There are rules governing port connections when modules are initiated within other 

modules. The Verilog simulator complains if any port connection rules are violated. 

These rules are summarized in figure 8. 

 

• Inputs  

Internally, input ports must always be of the type net. Externally, the inputs can be 

connected to a variable which is a reg or a net. 
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Figure 8            port connection rules 

 

 

• Outputs: 

Internally, outputs port can be of the type reg or net. Externally, outputs must always 

be connected to a net. They cannot be connected to a reg. 

• Inouts: 

Internally, inout ports must always be of the type net. Externally, inout ports must 

always be connected to a net. 

• Width watching: 

It is legal to connect internal and external items of different sizes when making inter-

module port connections. However, a warning is typically issued that the widths do 

not match. 

• Unconnected ports: 

Verilog allows ports to remain unconnected. For example, certain outputs ports might 

be simply for debugging and you might not be interested in connecting them to the 

external signals. You can let a port remain unconnected by instantiating module as 

shown below. 
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1.5.7 CONNECTING PORTS TO EXTERNAL SIGNALS : 

There are two methods of making connections between signals specified in the module 

instantiation and the ports in a module definition. These two methods cannot be mixed. 

These methods are discussed in the following sections. 

 

• Connecting by ordered list: 

Connecting by ordered list is the most intuitive method for most beginners. The 

signals to be connected must appear in the module instantiation in the same order as 

the ports in the port list in the module definition. Once again, consider the module 

fulladd4 defined in Example 5. To connect signals in module Top by ordered list, the 

Verilog code is shown in Example 6. Notice that the external signals SUM, C_OUT, 

A, B, and C_IN appear in exactly the same order as the ports sum, c_out, a, b, and 

c_in in module definition of fulladd4. 

Example 6      Connection by order list 
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• Connecting ports by name: 

For large designs where modules have, say, 50 ports, remembering the order of the ports 

in the module definition is impractical and error-prone. Verilog provides the capability to 

connect external signals to ports by the port names, rather than by position. We could 

connect the ports by name in Example 6 above by instantiating the module fulladd4, as 

follows. Note that you can specify the port connections in any order as long as the port 

name in the module definition correctly matches the external signal. 

 

Note that only those ports that are to be connected to external signals must be specified in 

port connection by name. Unconnected ports can be dropped. For example, if the port 

c_out were to be kept unconnected, the instantiation of fulladd4 would look as follows. 

The port c_out is simply dropped from the port list. 

 

Another advantage of connecting ports by name is that as long as the port name is not 

changed, the order of ports in the port list of a module can be rearranged without 

changing the port connections in module instantiations. 
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MODELING CONCEPTS 

 

GATE-LEVEL MODELING: 

2.1 Gate Types: 

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates 

as predefined primitives. These primitives are instantiated like modules except that they 

are predefined in Verilog and do not need a module definition. All logic circuits can be 

designed by using basic gates. There are two classes of basic gates: and/or gates and 

buf/not gates. 

 

2.1.1 And/Or Gates: 

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the 

list of gate terminals is an output and the other terminals are inputs. The output of a gate 

is evaluated as soon as one of the inputs changes. The and/or gates available in Verilog 

are shown below.  

 

 The corresponding logic symbols for these gates are shown in Figure 9. We consider 

gates with two inputs. The output terminal is denoted by out. Input terminals are denoted 

by i1 and i2. 

These gates are instantiated to build logic circuits in Verilog. Examples of gate 

instantiations are shown below. In Example , for all instances, OUT is connected to the 

output out, and IN1 and IN2 are connected to the two inputs i1 and i2 of the gate 

primitives. 
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  Figure 9                                           Basic gates  

 

More than two inputs can be specified in a gate instantiation. Gates with more than two 

inputs are instantiated by simply adding more input ports in the gate instantiation (see 

Example 7 ). Verilog automatically instantiates the appropriate gate. 

 
Example 7         Gate instantiation of and/or gates 
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The truth tables for these gates define how outputs for the gates are computed from the 

inputs. Truth tables are defined assuming two inputs. The truth tables for these gates are 

shown in Table5. Outputs of gates with more than two inputs are computed by applying 

the truth table iteratively. 

 

                                  Table 5                 Truth Table For and/Or gates  

 

2.1.2 Buf/Not Gates: 

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in 

the port list is connected to the input. Other terminals are connected to the outputs. We 

will discuss gates that have one input and one output. 

Two basic buf/not gate primitives are provided in Verilog. 
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The symbols for these logic gates are shown in Figure 10. 

Figure 10              Buf and Not Gates 
 

 

These gates are instantiated in Verilog as shown Example 8. That these gates can have 

multiple outputs but exactly one input, which the last terminal in the port list is. 

        

            Example 8            Gate Instant ion Of And/ Or gates  
 

                     

The truth tables for these gates are very simple. Truth tables for gates with one input and 

one output are shown in Table 6. 

                

Table 6                               Truth Tables for Buf /Not gates 

 

2.1.3 Gate Level Modeling Examples: 

4:1 Multiplexer: 
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We will design a 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful 

purpose in logic design. They can connect two or more sources to a single destination. 

They can also be used to implement Boolean functions. We will assume for this example 

that signals s1 and s0 do not get the value x or z. The I/O diagram and the truth table for 

the multiplexer are shown in Figure 11. The I/O diagram will be useful in setting up the 

port list for the multiplexer.                              

Figure 11           4 to 1 multiplexer 

                  

We will implement the logic for the multiplexer using basic logic gates. The logic 

diagram for the multiplexer is shown in Figure12.                       

Figure 12               Logic Diagram for Multiplexer 
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Two intermediate nets, s0n and s1n, are created; they are complements of input signals s1 

and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names are not 

specified for primitive gates, not, and, and or. 

 
Example 9         Verilog description of multiplexer 
 

 

 

This multiplexer can be tested with the stimulus shown in Example10. The stimulus 

checks that each combination of select signals connects the appropriate input to the 

output. The signal OUTPUT is displayed one time unit after it changes. System task 

$monitor could also be used to display the signals when they change values. 
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Example 10                  Stimulus for multiplexer  

The output of the simulation is shown below.  
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2.1.4 Gate Delays: 

In real circuits, logic gates have delays associated with them. Gate delays allow the 

Verilog user to specify delays through the logic circuits. Pin-to-pin delays can also be 

specified in Verilog. 

Rise, fall, and Turn-off Delays: 

There are three types of delays from the inputs to the output of a primitive gate. 

Rise Delay 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

 

Fall Delay  

The fall delay is associated with a gate output transition to a 0 from another value. 

 

 
Turn-Off Delay 
 

The turn-off delay is associated with a gate output transition to the high impedance value 

(z) from another value. 

If the value changes to x, the minimum of the three delays is considered. Three types of 

delay specifications are allowed. If only one delay is specified, this value is used for all 

transitions. If two delays are specified, they refer to the rise and fall delay values. The 
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turn-off delay is the minimum of the two delays. If all three delays are specified, they 

refer to rise, fall, and turn-off delay values. If no delays are specified, the default value is 

zero. 

2.1.5 Min/Typ/Max Values: 

Verilog provides an additional level of control for each type of delay mentioned above. 

For each type of delay—rise, fall, and turn-off—three values, min, typ, and max, can be 

specified. Any one value can be chosen at the start of the simulation. Min/typ/max values 

are used to model devices whose delays vary within a minimum and maximum range 

because of the IC fabrication process variations. 

Min value  

The min value is the minimum delay value that the designer expects the gate to have. 

Typ value  

The typ value is the typical delay value that the designer expects the gate to have. 

Max value 

The max value is the maximum delay value that the designer expects the gate to have. 

 

2.1.6 DELAY EXAMPLE: 

Let us consider a simple example to illustrate the use of gate delays to model timing in 

the logic circuits. A simple module called D implements the following logic equations: 

                                      Out = (a·b) + c 

The gate-level implementation is shown in Module D (Figure 13). The module contains 

two gates with delays of 5 and 4 time units. 

The module D is defined in Verilog as shown in Example 11. 
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Figure 13          module D 

 

             

                          Example 11   Verilog Definition for Module D Delay  

                 

The waveforms from the simulation are shown in Figure 14 to illustrate the effect of 

specifying delays on gates. The waveforms are not drawn to scale. However, simulation 

time at each transition is specified below the transition. 

• The outputs E and OUT are initially unknown. 

• At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay 

of 4 time units and E changes value to 1 after 5 time units. 

• At time 20, B and C transition to 0. E changes value to 0 after 5 time units and 

OUT transitions to 0, 4 time units after E changes. 
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Figure 14               Waveforms for Delay Simulation 

 

 

2.2 DATAFLOW MODELING:  

2.2.1 Continuous Assignment: 

A continuous assignment is the most basic statement in dataflow modeling, used to drive 

a value onto a net. This assignment replaces gates in the description of the circuit and 

describes the circuit at a higher level of abstraction. The assignment statement starts with 

the keyword assign. The syntax of an assign statement is as follows. 

 

 

2.2.2 Implicit Continuous Assignment: 

Instead of declaring a net and then writing a continuous assignment on the net, Verilog 

provides a shortcut by which a continuous assignment can be placed on a net when it is 

declared. There can be only one implicit declaration assignment per net because a net is 

declared only once. 

In the example below, an implicit continuous assignment is contrasted with a regular 

continuous assignment. 
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2.2.3 Implicit Net Declaration: 

If a signal name is used to the left of the continuous assignment, an implicit net 

declaration will be inferred for that signal name. If the net is connected to a module port, 

the width of the inferred net is equal to the width of the module port. 

 

2.2.4 Expressions, Operators & Operands: 

Dataflow modeling describes the design in terms of expressions instead of primitive 

gates. Expressions, operators, and operands form the basis of dataflow modeling. 

Expressions: 

Expressions are constructs that combine operators and operands to produce a result. 

         

Operands: 

Operands can be any one of the data types. Some constructs will take only certain types 

of operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-

select (one bit of vector net or a vector register), part-select (selected bits of the vector net 

or register vector), and memories or function calls. 
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Operators: 

Operators act on the operands to produce desired results. Verilog provides various types 

of operators.  

          

2.2.5 Operator Types: 

Verilog provides many different operator types. Operators can be arithmetic, logical, 

relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of these 

operators are similar to the operators used in the C programming language. Each operator 

type is denoted by a symbol. Table 7 shows the complete listing of operator symbols 

classified by category. 
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Table 7               Operator Types and Symbols 

 

    

Concatenation Operator: 

The concatenation operator ({,}) provides a mechanism to append multiple operands. The 

operands must be sized. Unsized operands are not allowed because the size of each 

operand must be known for computation of the size of the result. 
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Concatenations are expressed as operands within braces, with commas separating the 

operands. Operands can be scalar nets or registers, vector nets or registers, bit-select, 

part-select, or sized constants. 

 

Replication Operator: 

Repetitive concatenation of the same number can be expressed by using a replication 

constant. A replication constant specifies how many times to replicate the number inside 

the brackets ( { } ). 

        

Conditional Operator: 

The conditional operator(?:) takes three operands. 

Usage: condition_expr ? true_expr : false_expr ; 

The condition expression (condition_expr) is first evaluated. If the result is true (logical 

1), then the true_expr is evaluated. If the result is false (logical 0), then the false_expr is 

evaluated. If the result is x (ambiguous), then both true_expr and false_expr are evaluated 

and their results are compared, bit by bit, to return for each bit position an x if the bits are 

different and the value of the bits if they are the same. 

The action of a conditional operator is similar to a multiplexer. Alternately, it can be 

compared to the if-else expression. 

 



  

 

 

46 

 

Conditional operators are frequently used in dataflow modeling to model conditional 

assignments. The conditional expression acts as a switching control. 

          

 

2.3 Behavioral Modeling: 

2.3.1 Structured Procedures: 

There are two structured procedure statements in Verilog: always and initial. These 

statements are the two most basic statements in behavioral modeling. All other behavioral 

statements can appear only inside these structured procedure statements. 

Initial Statement: 

All statements inside an initial statement constitute an initial block. An initial 

block starts at time 0, executes exactly once during a simulation, and then does not 

execute again. If there are multiple initial blocks, each block starts to execute 

concurrently at time 0. Each block finishes execution independently of other blocks. 

Multiple behavioral statements must be grouped, typically using the keywords begin and 

end. If there is only one behavioral statement, grouping is not necessary. This is similar 
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to the begin-end blocks in Pascal programming language or the { } grouping in the C 

programming language. Example 12  illustrates the use of the initial statement. 

 

Example 12         Initial Statement  

 

In the above example, the three initial statements start to execute in parallel at time 0. If 

delay #<delay> is seen before a statement, the statement is executed <delay> time units 

after the current simulation time. Thus, the execution sequence of the statements inside 

the initial blocks will be as follows. 

 

The initial blocks are typically used for initialization, monitoring, waveforms and 

other processes that must be executed only once during the entire simulation run. 

 



  

 

 

48 

Always Statement: 

All behavioral statements inside an always statement constitute an always block. The 

always statement starts at time 0 and executes the statements in the always block 

continuously in a looping fashion. This statement is used to model a block of activity that 

is repeated continuously in a digital circuit. An example is a clock generator module that 

toggles the clock signal every half cycle. In real circuits, the clock generator is active 

from time 0 to as long as the circuit is powered on. Example 13 illustrates one method to 

model a clock generator in Verilog.     

Example 13              Always Statement 

 

In Example 13 , the always statement starts at time 0 and executes the statement clock = 

~clock every 10 time units. Notice that the initialization of clock has to be done inside a 

separate initial statement. If we put the initialization of clock inside the always block, 

clock will be initialized every time the always is entered. Also, the simulation must be 

halted inside an initial statement. If there is no $stop or $finish statement to halt the 

simulation, the clock generator will run forever. 

 

2.3.2 Procedural Assignments: 

Procedural assignments update values of reg, integer, real, or time variables. The 

value placed on a variable will remain unchanged until another procedural assignment 

updates the variable with a different value. The syntax is shown below. 
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There are two types of procedural assignment statements: blocking and nonblocking. 

Blocking Assignment: 

Blocking assignment statements are executed in the order they are specified in a 

sequential block. A blocking assignment will not block execution of statements that 

follow in a parallel block. 

The = operator is used to specify blocking assignments.  

Nonblocking Assignment: 

Nonblocking assignments allow scheduling of assignments without blocking execution of 

the statements that follow in a sequential block. A <= operator is used to specify 

nonblocking assignments. Note that this operator has the same symbol as a relational 

operator, less_than_equal_to. The operator <= is interpreted as a relational operator in an 

expression and as an assignment operator in the context of a nonblocking assignment. 

 

2.3.3 Multiway Branching: 

Case Statement: 

The keywords case, endcase, and default are used in the case statement.. 

 

 

Each of statement1, statement2 …, default_statement can be a single statement or a block 

of multiple statements. A block of multiple statements must be grouped by keywords 

begin and end. 
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Case x , Case z Keywords: 

There are two variations of the case statement. They are denoted by keywords, casex 

and casez. 

� Casez treats all z values in the case alternatives or the case expression as don't 

cares. All bit positions with z can also represented by ? In that position. 

� Casex treats all x and z values in the case item or the case expression as don't 

cares. 

The use of casex and casez allows comparison of only non-x or -z positions in the case 

expression and the case alternatives. 

 

2.3.4 Loops: 

There are four types of looping statements in Verilog: while, for, repeat, and forever. The 

syntax of these loops is very similar to the syntax of loops in the C programming 

language. All looping statements can appear only inside an initial or always block. 

Loops may contain delay expressions. 

While Loop: 

The keyword while is used to specify this loop. The while loop executes until the while-

expression is not true. If the loop is entered when the while-expression is not true, the 

loop is not executed at all.  

For Loop: 

The keyword for is used to specify this loop. The for loop contains three parts: 

� An initial condition 

� A check to see if the terminating condition is true 

� A procedural assignment to change value of the control variable 

The initialization condition and the incrementing procedural assignment are included in 

the for loop and do not need to be specified separately. Thus, the for loop provides a 

more compact loop structure than the while loop. 
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Repeat Loop: 

The keyword repeat is used for this loop. The repeat construct executes the loop a 

fixed number of times. A repeat construct cannot be used to loop on a general logical 

expression. A while loop is used for that purpose. A repeat construct must contain a 

number, which can be a constant, a variable or a signal value. However, if the number is 

a variable or signal value, it is evaluated only when the loop starts and not during the loop 

execution.  

Forever Loop: 

The keyword forever is used to express this loop. The loop does not contain any 

expression and executes forever until the $finish task is encountered. The loop is 

equivalent to a while loop with an expression that always evaluates to true, e.g., while 

(1). A forever loop can be exited by use of the disable statement. 

        A forever loop is typically used in conjunction with timing control constructs. If 

timing control constructs are not used, the Verilog simulator would execute this statement 

infinitely without advancing simulation time and the rest of the design would never be 

executed.  
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8 Bit ALU  

Arithmetic Logic Unit performs the arithmetic and logic operations during execution of 

an instruction. Contains accumulator CPU registers and related logic such as arithmetic 

and logic unit. ALU communicates with the internal registers and the external data bus by 

using internal data bus. Functions performed by the ALU include: 

� Addition 
� Subtraction 
� Logical AND 
� Logical OR 
� Logical Exclusive OR 
� Compare 
� Left or Right Shifts or Rotate  
� Increment 
� Decrement 
� Set/Reset and Test Bit 

 
3.1 Overview: 

The arithmetic logic unit (ALU) is the brain of the computer, the device that performs the 

arithmetic operations like addition, subtraction or logical operations like AND &OR. 

 

Figure 15      ALU Symbol 
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For this project I need to design 8-bit ALU to perform 16 operations: 

ADD, SUB, Increment, Decrement, AND, CLEAR, NOT, Immediate OR, MOV, MOV 

Word, Rotate Left, Rotate Right, SWAP, EX-OR, BCF, BSF. The ALU should have two 

8-bit inputs s1 and s2, 4-bit ALU operation, output should be 8-bit result, 1-bit Zero 

signal, 1-bit Carry Out and 1-bit overflow output when an overflow is detected. 

 
3.2 Project Requirements: 
 

Design 8-bit ALU that has inputs s1 [7:0], s2 [7:0], m ALU operation [3:0] and outputs 

Zero, Result [7:0], Overflow, Carry Out. The ALU should perform the above sixteen (16) 

operations. 

 
3.3 Design Description: 
 
3.3.1 1-bit ALU for the MSB: 
 

For the most significant bit (MSB) of my ALU I designed a special 1- bit ALU, which 

has overflow detection logic and a special output Set. 

 
 

Figure 16   1-bit ALU for the Most Significant Bit (MSB) 
 
 

3.3.2 Overflow Detection: 

The overflow can be found when we compare the CarryIn and the CarryOut signal. If 

they have different values, than overflow occurs; if both of them are 0s or 1s there is no 

overflow. This logic can easily be represented by XOR on the two signals. 
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Table 8     Truth Table for XOR 

 

3.3.3 Set Output: 

This 1-bit ALU differs from the regular one not only by the overflow detection. It has an 

extra output called Set used for the SLT operation. Set is the Sum output of the adder and 

is connected to the Less input of the first 1-bit ALU. 

3.4 Regular 1-bit ALU: 
 

My regular 1-bit ALU consists of 1-bit full adder, components for logical operations and 

operation selector. This 1-bit ALU is used for the first 7 bits [6.0] of the 8-bit ALU. 
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Figure 17   1-bit ALU 

                                                                                

3.5 Full Adder: 

It can perform the following operations: AND, OR, addition of a & b. The adder has 3 

Inputs - a, b, CarryIn; and 2 outputs - Sum and CarryOut and is also called (3,2). Adder 

with 2 inputs and 2 outputs is called half adder. 

 

 
 

Figure 18       1-bit Full Adder 
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Table 9     Input & Output Specification of 1-bit Full Adder 
 
 
3.6 Controls Of 1-bit ALU: 
 
Selecting the ALU operation to be performed is implemented with 4x1 multiplexer. 
 

 
 

Figure 19   4×1 Multiplexer 
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The 4x1 multiplexer is delivered with the logic of three 2x1 multiplexers as is shown on 

Fig. 20. The data inputs are A, B, C and D control; signals are S0 and S1; output result is 

E. The truth table on table 10 describes the logical functionality of 4x1 multiplexer. The 

code combination of the control signals S0, S1 will determinate which one of the data 

signals A, B, C or D will appear at the output E. For example with combination S0=0 and 

S1=0 the output signal E is A. 

 

Table 10 Truth Table for 4×1 Multiplexer 

 

 

  

Figure 20 2×1 Multiplexer & Truth Table 

 

3.7 Zero Detector: 

It is needed to check if two registers are equal or not. We could say that they are equal if 

a – b = 0. 
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Figure 21 Zero Detectors  

 

The expression for the Zero signal is:  
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Hard Ware Kit (Spartan -3A) 
 
Description: 
                

                 The Spartan-3A Evaluation Kit provides a platform for engineers designing 

with the Xilinx Spartan-3A FPGA and/or Cypress PSoC® Mixed Signal Array.  The 

board provides the necessary hardware to not only evaluate the advanced features of 

these devices but  also  to  implement  user applications  using  peripherals  and  

expansion connectors  on  the  Spartan-3A  evaluation board.  Figure 1 is a picture of the 

Spartan-3A evaluation board; the block diagram in Figure 2 provides a high-level view of 

the components and interconnects. 

                                                      
Features: 
                
Xilinx 3S400A-4FTG256C FPGA 
 
• Clocks 
 

� 16 MHz Oscillator (Maxim) 

� 12 MHz Clock from PSoC device 

� 32 kHz Clock from PSoC device 

• Memory 
 

� 32 Mb Page-Mode Flash Memory (Spansion) 

� 128 Mb SPI Flash Memory (Spansion) 

• Interfaces 
 

� USB 2.0 (PSoC) 

� JTAG Programming/Configuration Port 

� Temperature Sensor (Texas Instruments) 

• Buttons and switches 
 

� Four User LEDs 
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� Four PSoC Cap Sense capacitive switches 

� Four FPGA user “pushbuttons” (forwarded from PSoC Cap Sense switches) 

� Reset Push Button Switch 

 
• User I/O and expansion 
 

� Digilent 6-pin header (2) 

� 2x20 0.1” Expansion Connector 

 
• Configuration and Debug 
 

� JTAG       
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Hardware Flow Diagram: 
 
 
 
 

 
 

 
Figure 22   Flow Diagram 
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Spartan- 3A Evaluation Board Picture 

 
Figure 23  Spartan-3A Evaluation Board 
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Functional Description: 
 

 A Xilinx Spartan-3A (XC3S400A-4FTG256C) 400 K gate FPGA and a Cypress 

Cy8C24894 PSoC Mixed-Signal Array are the primary components of the Avnet 

Spartan-3A evaluation board.   In addition to on-board processing functions, the PSoC 

device provides off- board communication via a USB 2.0 full-speed interface.  

Communication between the PSoC and FPGA is facilitated by a 3.3 V level RS-232 

interface between the two devices.  This, along with several GPIO lines interconnecting 

the PSoC and FPGA, provide control and data-transfer mechanisms.  A high-level block 

diagram of the Spartan-3A evaluation board is shown in Figure 23.  As can be seen in 2 

Figure 23, the USB controller (PSoC), an SPI port, and an I^2C port provide off-board 

communication mechanisms.  On-board memory consists of a 128 Mbit SPI memory that 

may be used by either the PSoC or the FPGA, with FPGA access controlled by the PSoC; 

and 32 Mbit parallel Flash memory interfaced to the FPGA.  Subsequent sections provide 

details of the board design. 

 
 
Xilinx Spartan-3A FPGA: 
 

The Xilinx XC3S400A-4FTG256C device designed onto the Spartan-3A evaluation 

board provides four I/O banks with Vccaux and I/O voltage of all banks fixed at +3.3 V. 

The ability to power Vcco and Vccaux from a common rail is a feature of the Spartan-3A 

that allows a lower-cost board design. Note that because Vccaux is set at +3.3 V, each 

design’s UCF must contain the statement:  

 
CONFIG VCCAUX = “3.3”; 

 
 

The four I/O banks are described in Table 11 and detailed I/O pin usage is provided 

throughout this document. Note that all pins utilized are bidirectional (regardless of 

usage), the XC3S400A input-only pins are not utilized in this implementation. 
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Block Diagram 
 

 

 
 

Figure 24  Spartan-3A Block Diagram 
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Table 11 I/O Allocation 

 
 
Cypress PSoC Mixed-Signal Array: 
 

The Cypress Cy8C24894 is a configurable device containing analog and digital blocks 

and peripheral devices that allow the user to create customized configurations to support 

different applications.  As configured on the Spartan-3A evaluation board, the PSoC  

provides  a  full-speed (12 Mbps)  USB  interface, RS-232,  SPI  and I^2C  interfaces,  

four capacitive  touch-pads  (the condition of which is sent to the FPGA), and 15 general-

purpose I/O lines (12 connected to the FPGA and three connected to header  J9).A 6-pin  

header that  is  compatible  with the Cypress  Mini-Programmer allows configuration  of  

the  PSoC’s Flash program  store.  Additionally,  the  PSoC’ s  JTAG  interface  may  be  

utilized  to  program  the  FPGA;  e.g.,  the  FPGA  bit  file transferred to the PSoC via 

USB and the PSoC JTAG interface transfers the file into the FPGA. 
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Memory: 
 

The Spartan-3A evaluation board is populated with both parallel Flash memory (4 

Mbytes) and 128 Mbit SPI Serial to support various types of applications.  Both Parallel 

Flash and SPI Serial Flash may be used for FPGA configuration. Figure 25 shows a 

High-level block diagram of the memory interfaces on this board. 

 

 

 
 

Figure 25    Memory Interfaces 
 
 
Parallel Flash: 
 

Parallel Flash memory consists of a single 32 Mbit Spansion S29GL032N in a TSOP-56 

package interfaced to the FPGA.  This device (U22) may be utilized in a 4 M x 8 or a 2 

M x 16 configuration by control of the Flash_BYTE# signal.  Flash_BYTE# is pulled  

low  through a  10 K  resistor  to establish the  4 M  x 8  default configuration  that may  

be  used  for  FPGA configuration. Following configuration, the FPGA may drive 

Flash_BYTE# high to establish the 2 M x 16 configuration. Jumper JP1 may be used to 

write-protect the Flash memory by placing a shunt across pins 1 and 2; default setting is 

JP1 open. Note the PCB layout also supports the same Spansion Flash device in a 

TSSOP-48 package.  Table 12 provides the FPGA/FLASH pinout. 
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Table 12 Parallel Flash Interface Pinout 
 
Serial SPI Flash: 
 

128 Mbits of serial Flash memory is provided by a Spansion S25FL128P device (U19) 

interfaced to the Spartan- 3A FPGA via its dedicated SPI interface, and to the Cypress 

PSoC device via a 2:1 multiplexer (U20).  This multiplexer is controlled by the PSoC, 

which is master of this SPI interface.  There are two SPI modes as depicted in Figure 25; 

PSoC/FPGA��SPI Flash (PSoC_SPI_MODE=0) and PSoC��FPGA 

(PSoC_SPI_MODE=1). 

In the PSoC/FPGA �� SPI Flash mode, either the PSoC or the FPGA may access the 

SPI Flash by driving its select line low.  This is done through an AND gate (U21) that 

will drive the SPI Flash’s chip select line (SF_SEL#) low in response to a low s elect 

signal from the FPGA (FPGA_SPI_SEL#) or the PSoC (PSoC_SPI_SEL).  Note that the 

SPI clock line (SPI_CLK) may be driven by either the PSOC or the FPGA. Since this 
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configuration has the potential for conflict, if the PSoC intends to access the SPI Flash, it 

must drive the FPGA’s PROG_B pin low to place the FPGA in a reset state to prevent it 

accessing the SPI Flash. 

In the PSoC�� FPGA mode (PSoC_SPI_MODE=1) the multiplexer is configured to 

interconnect the PSoC and FPGA SPI interfaces; the purpose of this is to enable slave 

serial configuration from PSoC to FPGA.  In this mode the PSoC is master and the FPGA 

will act as slave.  Since the FPGA’s SPI interface is only active during SPI boot mode, 

implementation of the FPGA’s slave interface must be accomplished via firmware.  

While this configuration happens to share common pins with the FPGA SPI port, they 

will function as slave serial in this mode.  Table 13 provides the FPGA’s SPI interface 

pinout.  

6-pin header J8 may be used to allow the PSoC to expand the SPI interface to an external 

environment.  Since the PSoC’s SPI select signal (PSoC_SPI_SEL#) is common to the 

SPI Flash as well as the SPI expansion interface, the default jumper on JP6 must be 

removed prior to using the SPI expansion.  Table 14 provides the J8 pinout.  

Note that J8 pin 6 provides +3.3 V to another board; if that board is already powered then 

J8 pin 6 must not be connected. 

 

 

Table 13 SPI Interface Pinout   
 

 
Table 14 SPI Header J8 Pinout 
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Interfaces:  
 

Interfaces on the Spartan-3A evaluation board consist of USB 2.0 via the PSoC, two 0.1” 

6-pin right-angle headers designed to T M interface to Digilent modules, a 0.1” 2 x 20 

header providing connectivity to available FPGA general-purpose I/O pins, a 0.1” 1 x 6 

header for SPI interface expansion, and a sensor providing temperature information via 

an I ²C interface. 

 

USB 2.0: 

USB Mini-AB connector P1 connects the PSoC device to a full-speed (12 Mbps) USB 

host.  Power supplied by the USB host via connector P1 (+5V_USB) may be used to 

power the Spartan-3A evaluation board by jumpering JP2 1:2. 

 
USB-UART: 
 

The USB-UART interface is used for communication between the PSoC and the FPGA 

but is not utilized externally (e.g., there is no RS-232 connector).  This interface operates 

at 3.3 V and is the mechanism by which the FPGA communicates via USB; e.g., the 

PSoC device provides UART/USB translation. Note that the net names UART_RXD and 

UART_TXD on the schematic are named in terms of the PSoC connection.  Net 

UART_RXD is an output from the FPGA and an input to the PSoC, as shown by the 

direction of the off-page connectors on the schematic.  The FPGA Tx signal is connected 

to the PSoC Rx signal and then the PSoC re-broadcasts the data to the USB. For 

incoming data from USB, the PSoC transmits on the UART_TXD net which is actually 

an Rx for the FPGA. 

 

 

Table 15 USB-UART Signals 
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Digilent Headers: 
 

Two right-angles, 6-pin (1 x 6 female) Digilent headers (J6, J7) are interfaced to the 

FPGA, with each header providing 3.3 V power, ground, and four I/O’s.  These headers 

may be utilized as general-purpose I/Os or may be used to interface to Digilent modules. 

J6 and J7 are placed in close proximity (0’9”-centers) on the PCB in order to support dual 

Digilent modules. Figure 26 shows the pinout of the Digilent headers; Table 16 provides 

the FPGA pinout. 

 

 
 

Figure 26 Digilent Header Pinout 
 
 

 
Table 16 Connections  

Miscellaneous I/O: 
 

Four user push button switches are provided via capacitive touch-pads connected to the 

Cypress PSoC device.  A “touch” at any of these four pads is sensed by the PSoC and 

forwarded to the FPGA; these “push buttons” and their relationship to the FPGA are 

depicted in Table 17. Note that FPGA_RESET is a “soft” reset intended for FPGA code 

usage and does not perform any type of FPGA hardware reset. 
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Table 17 Connections  
 

LEDs: 

Four LEDs are provided for signaling purposes and connected to the FPGA as shown in 

Table18. The corresponding FPGA pin must be driven high to light an LED. 

 

Table 18 LED Assignment 
GPIO Header (2 x 20):  
 

Some unused FPGA pins are connected to 0.1” 2 x 20-pin header J4. Signal names and 

connector pin/FPGA pin connections are identified in Table 19. All I/O’s are +3.3 V 

CMOS. 

 

Table 19 GPIO Pin Assignment 
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I²CTemperature Sensor: 
 

A Texas Instruments TMP100 digital temperature sensor is interfaced to the PSoC via an 

I ²C interface.  The TMP100 has two 2 address pins to set the low-order I C slave address 

bits; both pi ns are pulled low in this application providing an address of 0x90 (W) and 

‘0x91 (R).The TMP100 will provide temperature readings over its specified operating 

temperature, -55 °C to +125 °C; well beyond the ability of the Spartan-3A evaluation 

board to operate. 

Module Clocks: 
 

Three clocks are provided to the FPGA; 16.0 MHz from a Maxim MAX7381 CMOS 

oscillator (U6), and 12.0 MHz and 32.0 kHz from the PSoC. Table 20 provides FPGA 

connection details. 

 

 
Table 20 Module Clocks 

Configuration: 
 

The  Spartan-3A  evaluation  board  provides  four mechanisms  to  program  and  

configure  the  FPGA;  these  are  JTAG,  Parallel  Flash, Serial Flash, and the Cypress 

PSoC. The storage devices (Flash and SPI) cannot be programmed via the JTAG 

connector. The FPGA is the only thing in the JTAG chain on the Spartan-3A evaluation 

board; however, depending on the setting of configuration jumpers M [2:0], any of these 

can be the configuration source. The serial Flash, Parallel Flash, and PSoC are described 

earlier in this document. 

Programming the Spartan-3A evaluation board via Boundary Scan requires that a JTAG 

download cable be attached to the 14-pin 2 mm  spaced  header  J5  (Figure 27)  with  a  

ribbon  cable  or  with  flying  leads.  If  the  Xilinx  Parallel  Cable  IV  is  used,  the  

ribbon  cable connector mates with the keyed J5 connector. 
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Figure 27  Parallel IV Connector  
 
Configuration Modes: 
 

The  following  table  shows  the  Spartan-3A  evaluation  board  configuration  modes  

set  by  Jumper  JP4.  All mode jumpers (including the PUDC_B pin) are pulled high, 

with jumper installation grounding the connection.  Adding a jumper to the MODE pins 

ties them to a pull-down that is stronger than the default pull-up.  This is necessary in 

order for the PSoC to overdrive the MODE jumpers regardless of whether or not the 

jumpers are installed. Figure 6 depicts configuration jumper JP4; Table 21 provides the 

various configuration settings at JP4, with recommended settings highlighted. A  push  

button labeled  “PROG” (SW1)  is  pulled  high  and  connected  to  the  FPGA  PROG  

via  AND  gate  U9;  also  connected  to  U9  is  the  PSoC (PSOC_FPGA_PROG).   

Pushing SW1 (or driving PSOC_FPGA_PROG low) activates the FPGA programming 

mechanism. Upon releasing SW1 (or PSOC_FPGA_PROG going high), a re-

configuration is initiated based upon the setting of JP4.  A blue LED (D7) should light 

when FPGA “DONE” is asserted. 
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Table 21 JP4 Settings  
 
 

 
 

Figure 28 Configuration Jumper (JP4) 

 
Module Power: 
 
The  Spartan-3A  evaluation  board  requires  a  +5  V  input  at  barrel  jack  J3  or  +5  V  

via USB  cable. Jumper JP2 is used to select between the barrel jack (JP2 = 2:3) or USB 

power (JP2 = 1:2).  LED D1 should be illuminated when power is applied. Jumper JP7 

1:2 selects the barrel jack/USB input power; JP7 2:3 is not applicable.   Note that the 

barrel jack requires a 2.1 mm plug. 

 

Application of 5 V power is sensed by a Texas Instruments TPS3809K33 Voltage 

Supervisor.   When  power  is above the TPS3809’s threshold, its active-low  reset output  

is  driven  high supplying the enable  for  a Texas  Instruments TPS62290 1A  step-down 

converter (U5) to supply the +3.3 V rail.  The 3.3 V rail provides the enable (a Texas 

Instruments TPS3106K33 Voltage Supervisor) to a second TPS62290 (U24) which 
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supplies the +1.2 V rail.  When the+1.2 V rail is above the TPS3106’s threshold, its 

active-low reset output is released allowing the power-on reset signal (PO_RESET#) to 

go high.  As mentioned above, pushbutton switch SW1 may be used to momentarily force 

(via AND gate U23) PO_RESET# low. 

 

                                          Note  that  0-ohm  jumper JT1  may  be  utilized  to  set  the  

operating  mode  of  the  TPS62290  converter; JT1  =  1:2  (default)  sets  fixed- 

frequency PWM mode, JT1 2:3 sets power-save mode (automatic PFM/PWM switching).  

                                           

                                         Figures 29, 30 and 31, below, show details of the +3.3 V and 

+1.2 V power supplies.  Figure 29 shows that +1.2 V power (bottom trace) is delayed 114 

ms from +3.3 V power.  Using a finer scale, Figures 30 and 31 shows the rise of +3.3 V 

and +1.2 V power (respectively) is monotonic and glitch-free. 

 

 

 
Figure 29 Power Supply Sequencing 
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Figure 30 +3.3v Power Supply Startup 

 
 

 
Figure 31 +1.2v Power Supply Startup 
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PCB Stackup: 
 
Figure 32 shows 4-layer stacks up of the Spartan-3A Evaluation Kit Printed Circuit 

Board (PCB).  The PCB substrate is FR4- class epoxy glass with 1/2oz copper used for 

all layers.  

 

Figure 32 PCB Layer Stack 
 
 

 


