

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DIGITAL ELECTRONICS SEMESTER - 1

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	Cho	ose th	e correct alternatives for any	ten of the	e following:	$10 \times 1 = 10$
5	i)	(110	$(0.1011)_2 = (?)_{10}$			
•		a)	10.6785	b)	11.6578	
		c)	12.6875	d)	13.6785.	
	ii)	2's	complement of 10101100 is			
		a)	11001010	b)	01010011	
		c)	01010100	d)	01011001.	
	iii)	(24	$(7\cdot 36)_8 = (?)_{16}$			
		a)	A7·78	b)	1A7·36	
	• •	c)	B7·87	d)	1B7·36.	
	iv)	MBI	R, in reference to memory ma	nagemen	t is	
		a)	Memory Broad Register	b)	Memory Buffer Relay	
		c)	Memory Buffer Register	d)	None of these.	
	v)	Out	put of NAND gate is 1, if and	only if		
		a)	all inputs are 1	b)	any input is 1	
		c)	all inputs are 0	d)	any input is 0.	

٠.	/RCA	SRM.1	/BCA-101	/OS /	(AA)

7	ŧ

Ulech
Utech

vi)
$$A + \overline{A} = ?$$

a) 1

b) (

c) A

d) $\overline{\mathbf{A}}$.

vii) If the no. of states of a counter is 8, then the no. of flip-flops is

a) 8

b) 3

c) 4

d) 6.

viii) $(A.B + \overline{A}.B + \overline{A}.\overline{B})$ is equal to

a) $A + \overline{B}$

b) $\overline{A} + B$

c) A+B

d) 1.

ix) Karnaugh Map is used to

- a) simplify Boolean function
- b) design Boolean function
- c) evaluate Boolean function
- d) none of these.

x) A multiplexer has

a) single input

b) multiple output

c) no output

d) single output.

xi) Output of R-S (NAND) flip-flop, for R = 1 & S = 1 is

'a) set

b) reset

c) race

d) no change.

xii) Subtracting 1111 from 11000 will result to

a) 1000

b) 1100

c) 1001

d) 1011.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Apply K-map to obtain the minimal form for the function :

$$F(A, B, C, D) = \Sigma(0, 4, 5, 7, 8, 9, 13, 15)$$

 $d(A, B, C, D) = \Sigma(1, 2, 6, 10)$

- 3. Draw a half-adder circuit and describe its operations.
- 4. Design a 4-bit up-down counter.
- 5. Prove the following logical equation using Boolean algebra:

$$(A+BC) \cdot (B+A\overline{C}) = BC + A\overline{C}$$

- 6. i) Subtract $(7489)_{10}$ $(2485)_{10}$ using 10's complement method.
 - ii) What is a Multiplexer? Why is it called "Data selector"?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Represent the decimal number "27" in
 - i) BCD code
 - ii) Octal code
 - iii) Gray code.
 - b) Draw the block diagram of a digital multiplexer and explain its function.
 - c) Give the functional truth table of a 4:1 multiplexer and realize it using basic gates AND, OR and NOT.
 - d) Implement the expression using a multiplexer:

$$f(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14)$$

3 + 4 + 4 + 4

- 8. a) What do you mean by a sequential circuit?
 - b) What are synchronous & asynchronous sequential circuits?
 - c) Explain the functionality of D-flip-flop. Give the truth table, State diagram.
 - d) What do you mean by Edge-triggering & Level-triggering in flip-flops?

2 + 3 + 5 + 5

- 9. a) What is a flip-flop?
 - b) What are the uses of flip-flops?
 - c) Give the circuit diagram of a J-K flip-flop.
 - d) Give the truth tables of S-R & J-K flip-flops.

2+3+4+6

10. a) Given the following truth table:

Inputs			Outputs	
х	у	z	+ Je F1 A+8	F2
0	Juan volumejeme	e O O O au Ma	act (7480)-(248	0
0	0	1	1	0
0	1 .	0	1 .	0
0	1	1	0	1
1	0	0	1	0
1		1	0	1
1	internation	0	0 290/8 0	1
1	1	1	1	1

- i) Obtain the simplified functions in sum of products.
- ii) Obtain the simplified functions in product of sums.
- b) Design a BCD to Exess-3 Code converter.

8 + 7

- 11. a) Explain different types of RAM and ROM.
 - b) Write short notes on any two of the following:
 - i) Parity checker
 - ii) Ring counter
 - iii) Magnitude comparator.

 $7 + (2 \times 4)$

Fins: TO D